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Adaptive feedback control system for reduction of
vibroacoustic emission

Łukasz Nowak
Institute of Fundamental Technological Research, Polish Academy of Sciences

Abstract

The aim of the present study is to introduce the possibilities of modifying
vibrations of a thin plate structure with arbitrary boundary conditions using
the developed, original active feedback control system in such manner that the
amplitude of the acoustic pressure field generated by the plate is minimized in
a selected point of the ambient space.

Theoretical investigations on the phenomena underlying the processes of
detection and excitation of vibrations of thin plate structures using piezoelec-
tric transducers are presented. An original algorithm for computation of the
free-field acoustic radiation characteristics of vibrating plate structures with
arbitrary boundary conditions has been developed and implemented. The algo-
rithm provides a significant reduction of the required computational time and
cost. Novel optimal control and adaptation algorithms for determining optimal
feedback gain values, for which the amplitude of acoustic pressure is minimized
in a given point of the ambient space surrounding the controlled structure, have
also been developed.

The active vibroacoustic control system used in experimental investigations
has been designed and constructed in accordance with an original concept, with
separated, independent analogue feedback paths. The results of experiments
carried out in an anechoic chamber showed that under the assumed conditions
it is possible to obtain significant levels of reduction of noise emitted by the
controlled plate structure, excited to vibrate by an external force.



Adaptacyjny system sterowania ze sprzężeniem
zwrotnym dla redukcji transmisji wibroakustycznej

Łukasz Nowak
Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk

Abstrakt

Podstawowym celem niniejszej pracy jest przedstawienie możliwości detekcji
i kontroli drgań cienkich konstrukcji płytowych o dowolnych warunkach mocow-
ania za pomocą zaprojektowanego, oryginalnego aktywnego układu sterowania
bazującego na sensorach i aktuatorach piezoelektrycznych, w celu minimalizacji
amplitudy ciśnienia akustycznego w wybranym punkcie przestrzeni otaczającej
strukturę.

Przedstawiony został opis teoretyczny rozpatrywanych zjawisk leżących u
podstaw procesów detekcji i wzbudzania drgań struktur płytowych za pomocą
przetworników piezoelektrycznych. Opracowano i zaimplementowano oryginalny
algorytm wyznaczania rozkładu pola ciśnienia akustycznego w otoczeniu płyty
drgającej w wolnej przestrzeni, umożliwiający minimalizację czasu i kosztu niezbęd-
nych obliczeń numerycznych. Opracowane zostały także oryginalne algorytmy
sterowania optymalnego i adaptacji, umożliwiające szybkie i efektywne wyz-
naczanie optymalnych wartości wzmocnień pętli sprzężeń zwrotnych układu
sterowania, dla których następuje minimalizacja amplitudy ciśnienia akusty-
cznego w wybranym punkcie przestrzeni otaczającej kontrolowaną strukturę
płytową.

System sterowania aktywnego wykorzystany do badań doświadczałnych został
zaprojektowany i skonstruowany według oryginalnej koncepcji z wydzieleniem
niezależnych, analogowych torów sprzężeń zwrotnych. Wyniki eksperymentów
przeprowadzonych w komorze bezechowej wykazały, iż w badanym układzie
możliwe jest znaczne zredukowanie poziomu hałasu emitowanego przez kon-
trolowaną konstrukcję płytową pobudzoną do drgań przez siłę zewnętrzną.



Symbols and abbreviations

The short list of most frequently used symbols and abbreviations is provided
below:

a – length of a plate
ap – length of a piezoelectric transducer
a – vector of modal selectivity values of the actuator
Am – modal decomposition coefficients of the excitation intro-

duced by an actuator
b – width of a plate
bp – width of a piezoelectric transducer
cs – wave propagation velocity in a plate
cijkl – fourth-order elasticity tensor
CCAB – capacity of the wires connecting sensor with the amplifier
Cp – capacity of a piezoelectric sensor
δ – Dirac delta function
δ′ – derivative of the Dirac delta function
d3 – piezoelectric material constant
D – flexural rigidity
Dk – electric displacement vector
ǫki – second-order tensor of dielectric constants
ekij – third-order tensor of piezoelectric coefficients
E – Young modulus
Ek – electric field vector
f – temporal frequency
fV
L – lower cutoff frequency of voltage amplifier
fV
H – higher cutoff frequency of voltage amplifier
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fC
L – lower cutoff frequency of charge amplifier
fC
H – higher cutoff frequency of charge amplifier
fc – cost function
fre – cost function, real component
fim – cost function, imaginary component
fmin
c – global minimum of the cost function
FBe – external load applied per length of a beam
Fext – external load applied per surface area of a plate

F̃ext – spatial distribution of amplitude of pressure applied on the
surface of a plate

Fn – amplitude of vibrational mode number n, excited by the ex-
ternal disturbance in the absence of the forces introduced by
the control system

F – vector of modal amplitudes Fn

F
∗ – estimated vector of modal parameters of the external exci-

tation
γ – regularization parameter
G – Green’s function
Gm – gain of feedback loop number m
Gmax

m – maximum available gain value for feedback loop number m
G – vector of feedback gain values
hs – thickness of a plate
hp – thickness of a piezoelectric transducer
H – Heaviside step function
I – cross-sectional moment of inertia
I – identity matrix

ka – wave number of an acoustic wave
ks – structural wave number
kn – wave number of structural mode no. n
Kf – material-geometric constant
L – length of a beam
µ – double layer potential
M – number of feedback loops in the control system
M – control system matrix

ν – Poisson’s ratio
n – unit vector normal to the plate’s surface
N – total number of considered modes of vibrations
Ni – global shape function no. i
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N e
i – local shape function no. i of element e

ω – angular frequency
ωm – angular eigenfrequency of a structural mode no. m
Φn – shape function of mode no. n
p – acoustic pressure
P re
n – modal radiation coefficient (real) of structural mode no. n

P im
n – modal radiation coefficient (imaginary) of structural mode

no. n
P – vector of modal radiation coefficients
Q – electric charge

Q̃ – amplitude of the harmonically varied sensor charge
ρa – air density
ρ – density of the material of a plate
r – observation point
ra – source point
R – vector pointing from a source point to an observation point

R̃ – gain of the signal conditioning circuit attached to the piezo-
electric transducer

σ – single layer potential
σ – stress tensor

s – vector of modal sensitivity values of the piezoelectric sensor
S – constant cross-section area of a beam
Sij – second-order strain tensor

S̃m – sensitivity function of a piezoelectric sensor to structural
mode no. m

S̃mn – sensitivity function of sensor m to structural mode n
S – system sensitivity matrix

Tij – second-order stress tensor
U – vector of voltage amplitudes of signals induced on the piezo-

electric sensors

Ũm – voltage amplitude of signal induced on a piezoelectric sensor
no. m

Vn – amplitude of the normal velocity of the surface of a plate
V – amplitude of a harmonic voltage driving actuator
w – displacement, z-direction
w̃ – frequency-dependent amplitude function of harmonic vibra-

tions
Wn – amplitude of mode no. n
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W – vector of modal amplitudes of vibrations

ADC – analog-to-digital converter
ANC – active noise control
ASAC – active structural acoustic control
AVC – active vibration control
BEM – boundary element method
DAC – digital-to-analog converter
FEM – finite element method
FET – field-effect transistor
IVBEM – indirect variational boundary element method
LQG – linear-quadratic-Gaussian control
LQR – linear-quadratic regulator
VCA – voltage controlled amplifier
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1

Introduction

1.1 Problem statement

The aim of the present study is to develop and evaluate a novel active vi-
broacoustic control system, methods, and algorithms enabling for reduction of
sound pressure level generated by a vibrating plate structure in a given point
of the ambient space. The investigations are limited to low frequency vibra-
tions only (up to about 500 Hz), as in the higher range the acoustic energy can
be efficiently dissipated passively using, for example, various porous materials.
Thin, rectangle shaped plates with arbitrary (but known in advance) boundary
conditions and dimensions much smaller than the radiated acoustic wavelenghts
are considered. It is assumed, that the structures are excited to vibrate by an
external harmonic force with arbitrary spatial distribution, which parameters
are unknown and have to be determined. The control system uses a number of
small, rectangle shaped piezoelectric transducers attached to the surface of the
controlled structure, some of them serving as sensors and providing information
about the current state of the plate, while others are used as actuators to in-
troduce the control loads and modify the vibration pattern in such a manner
that the noise level in a given point of the ambient space is as low as possible.
Steady state harmonic vibrations are considered but it is also assumed that the
parameters of the external excitation may change over time and the control
system must have the ability to adapt to those changes – specifically, be able to
detect transitions between different states and to recalculate the optimal control
parameters.

The thesis of the study can be formulated as follows: vibrations of a thin

plate structure with arbitrary boundary conditions excited by an ex-

ternal harmonic force can be modified using an active feedback control

system based on a finite number of pairs of piezoelectric sensors and

actuators in such a manner that the amplitude of acoustic pressure

field generated by the plate will be minimized in a selected point of
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the ambient space.

Theoretical investigations on mechanisms and phenomena underlying the
sound generation by the considered structures and the interaction between con-
trol system and the plates are presented in the study. Due to the high level of
generality most of the considered issues cannot be described using analytical
formulas. For that reason the relevant numerical models have been developed
and implemented in order to predict the behavior of the considered systems
under the assumed conditions. The results of the computations are compared
to the results of experimental investigations. The experiments have been car-
ried out using various developed and constructed smart composite structures,
electronic measurement and control systems, and laboratory stands. The com-
parison between the numerical predictions and results of measurements allows
to evaluate the correctness of the adopted assumptions. The study provides a
detailed analysis of many aspects regarding active vibroacoustic control of plate
structures, from the theoretical description of the involved phenomena up to
physical implementation and practical validation of the chosen control meth-
ods.

The investigated issues have been divided into groups thematically related
with various involved mechanisms and phenomena and described in separate
chapters. Each of the chapters includes a theoretical description of the problem
and the current state of the art in the related field. Adopted assumptions, nota-
tions, and the relevant physical and mathematical models are introduced, as well
as the descriptions and results of the corresponding numerical and experimental
investigations.

The first chapter of the study provides the necessary information on aims
and scope of the work, underlying motivation, and general assumptions. The
state of the art in the field of active noise and vibration control systems is
presented.

The second chapter is devoted to the problem of free and forced vibrations of
thin beam and plate structures. Analytical, numerical, and experimental meth-
ods of determining modal parameters of the considered structures are intro-
duced. Influence of various factors and assumptions on the consistency between
results of analytical and numerical predictions and the results of measurements
is investigated.

Vibrations of plates submerged in an acoustic medium are the source of
sound radiation to the ambient space. As the main goal of the presented inves-
tigations is to minimize the sound pressure level in a given point of the space,
the knowledge on the radiation characteristics of the considered structure is re-
quired. However, due to the fact that the assumed active control system does
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not obtain any information from acoustic pressure sensors – such as microphones
– the radiation parameters have to be determined based on the modal ampli-
tudes of vibrations. The solution of this problem is described in Chapter 3. The
developed and implemented numerical model using dedicated computational al-
gorithm is presented. Results of the simulations are compared to the results of
experimental investigations carried out in an anechoic chamber. The influence
of the inertial loading introduced by various acoustic media is investigated.

Chapter 4 describes various issues regarding application of piezoelectric
transducers as sensors and actuators in active control of vibrations of thin beam
and plate structures. A new form of theoretical description is introduced in order
to better describe the ability of sensing and exciting specific structural modes
by the transducers. Different theoretical and technical aspects of developing and
constructing smart composite structures and the necessary signal conditioning
circuits are presented. The results of numerical simulations and experimental
investigations carried out using various beam and plate structures made of alu-
minum and composite materials – including actual materials used in aviation –
are introduced.

The results and conclusions obtained during the investigations described in
Chapters 2 – 4 form the basis for the development and construction of an active
vibroacoustic control system of plate structures, which is the topic of Chapter 5.
Detailed assumptions concerning the aim and the methods of control are intro-
duced. The developed algorithms for determining optimal control parameters
and modal characteristics of the external excitation force based on the electric
signals from sensors are presented and the details concerning the implementa-
tion of the system are described. The control performance has been evaluated
in experimental investigations carried out in an anechoic chamber.

The obtained conclusions regarding the possibilities and efficiency of active
vibroacoustic control of plate structures with the developed system and meth-
ods are summarized in Chapter 6. The main completed tasks of the study are
listed. The results of the conducted research form the basis for further inves-
tigations aimed at improvement of the parameters and extending the scope of
the potential applicability of the proposed system or its components. The last
section of the present study provides recommendations for the future work in
this field.
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1.2 Motivation

The subject of the present study falls within the scope of a relatively young
and dynamically evolving research field, which is active vibroacoustic control.
Over the past several decades a lot of scientific attention has been given to
the problem of reduction machinery noise in various industry branches, such as
aviation, maritime, rail transport, road transport, and mechanical engineering.
Engines, propellers, fans, and other machines are sources of noise and vibra-
tions, which propagate through the connected structural elements making them
secondary sources of acoustic radiation. The radiated and induced sound is
a persistent problem, which is often very poorly alleviated by passive means,
particularly at low frequencies. The exposure of people to noise can cause –
depending on the considered sound pressure levels – serious health problems or,
at best, significant discomfort. The influence of industrial noise on the natural
environment, namely on the behavior of various animal species is another seri-
ous problem to which a lot of attention has been recently given. The excessive
structural acoustic radiation is also highly undesirable in all fields where the
secrecy of operation is crucial. This especially concerns military applications. In
the light of the described issues the problem undertaken in the present study
appears as very up-to-date and important.

Although the fact that the first attempts of applying active control methods
for reduction of machinery noise were reported as far back as in 1930’s [1], it
was not until the end of the 20th century when the development of technol-
ogy allowed for practical implementations of such systems. This was especially
boosted by the rapid increase of available computational power, which allowed
to perform the time-critical, complex control algorithms. Nowadays, the neces-
sary electronic hardware can be built based on small, cheap, and widely available
microprocessors, programmable logic devices, or complete modules integrating
all the required components. For that reason the conducted investigations can
be focused more on developing new, effective methods and algorithms of active
vibroacoustic control and less on overcoming technical limitations. Apart from
the feasibility of the assumed tasks, an important issue is also the fact that
although many scientific investigations have been recently devoted to the con-
sidered topic, a lot of new and unsolved problems still remain. This especially
concerns real-life complex structures or structures with non-uniform boundary
conditions, as most of the research described in literature is focused on vibra-
tions of beams and plates with specific mounting conditions, for which analytical
equations of motion can be given. The current state of the art on the considered
topic is presented in Section 1.3, while the main original elements contributed
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by the present study are listed in Section 6.2. The possibility of dealing with
interesting and open interdisciplinary scientific problems is an important mo-
tivating factor that justifies taking the challenge of developing the described
active vibroacoustic control system.

1.3 State of the art

The problem of minimizing the levels of vibration and acoustic radiation
in various mechanical systems has a long history and has been the topic of
numerous scientific investigations over the past several decades. As it has been
described in Section 1.2, the considered phenomena often have a significant neg-
ative impact on human health, natural environment, and operational efficiency
and service life of relevant devices and systems. The presented solutions to the
problem can be in general divided into three main groups: passive, active, and
semi-active methods. The division criterion in this case is the use of energy from
external sources.

The passive approach involves using various kinds of dampers which do not
require any external power supply for proper operation. Passive methods are
widely used in many practical applications, as they are relatively cheap, simple,
and maintenance-free. On the other hand, they are also often very inefficient,
especially in low frequencies. The porous materials are commonly used for sup-
pressing sound and vibrations due to very good absorption, especially in high
frequency regions. The general theory on properties and modeling of such ma-
terials can be found, for example, in [2, 3]. Some practical considerations on
using porous sound absorbers in audio engineering are presented in [4]. Nar-
rowband acoustic signals can also be effectively suppressed by using reactive
devices, such as Helmholtz resonators which are tuned to a single, specified
frequency. Vibration dampers can also be based on piezoelectric transducers
with passive resonant shunt circuits. The resonant frequency in such a case is
determined by the value of capacitance of the transducer and the value of con-
nected inductance. The energy of vibrations is converted to electric energy due
to the piezoelectric effect and then dissipated on resistors as heat. Design of
such systems and problem of selecting optimal inductance and resistance values
is introduced in [5]. However, the efficiency of sound and vibration damping us-
ing shunted piezoelectric materials is very poor compared to the active control
systems based on piezotransducers.

In the semi-active approach the energy from an external power supply is used
only to modify the properties of the selected elements of the damping system
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and is not applied directly to the controlled structure. Such a solution ensures
lower energy requirements and better stability than the active systems while
providing higher damping levels than the passive methods. The semi-active sys-
tems can also have the ability to adapt to changes in operating conditions. One
of the examples of such devices are dampers with magneto-rheological fluid.
The viscosity of such fluid increases in the magnetic field whose intensity can
be modified with electric control signals. Consequently, the parameters of the
damper can be dynamically altered. Some theoretical background and descrip-
tions of numerical and experimental investigations on such systems can be found
in [6–8]. The magneto-rheological dampers are used for example to suppress the
vibrations in car industry, or in attenuation of seismic vibrations [9].

The system developed and constructed within the framework of the present
study falls within the scope of the last of the described groups of methods,
which are the active control techniques. In the active approach the energy from
an external power source is converted into the energy of interaction between
the actuators and the controlled object. Depending on the aim of the control,
three different kinds of active control methods for reduction of noise and vibra-
tions are distinguished: Active Vibration Control (AVC), Active Noise Control
(ANC), and Active Structural Acoustic Control (ASAC). The active approach
is particularly suitable in the low frequency range, possibly as a complement to
the passive means.

In AVC approach the control is focused at minimization of the selected quan-
tities describing vibrations of the structure, such as velocities or accelerations.
The information about the state of the structure is obtained from sensors such
as accelerometers, piezoelectric transducers, or strain gauges, while the control
forces are typically applied using electromagnetic exciters or piezoelectric actu-
ators. Although it is a fact, that in many cases the generated acoustic pressure
field will also be suppressed, it does not have to be that way in general. Moreover,
as it has been shown by Knyazev and Tartakovskii [10], in some cases reduction
of the level of vibrations may actually result in an increased acoustic radiation
to the ambient space. This is due to the fact that various forms of vibrations
are characterized with different radiation efficiency and that the amplitude of
the acoustic pressure cannot be expressed as a simple linear combination of
the modal amplitudes. The theoretical background of the AVC methods can be
found, for example, in [11–13].

The idea of using the phenomenon of destructive interference to intention-
ally suppress the undesirable noise was documented and patented in 1930 by
a French engineer Henry Coanda and soon after that, in 1933, by a German
inventor Paul Lueg [1, 14]. Their concepts assumed the use of microphones, am-
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plifiers, and loudspeakers to generate an acoustic signal with the opposite phase
to the primary acoustic disturbance. However, neither of them had managed to
construct a working prototype, due to the technical limitations at the time. Two
decades later other attempts of practical implementations of similar systems for
an active reduction of sound were made by Olson and May [15, 16] – once again,
with no success. Their devices turned out to work only in a narrow frequency
band, with very poor efficiency. Moreover, the control parameters had to be set
manually. It took about next forty years for the development and dissemination
of electronic systems – especially digital signal processors, microcontrollers, pro-
grammable logic devices, and other, similar units – to allow such ideas to come
true. The described approach with loudspeakers as secondary acoustic sources
used to suppress the unwanted components of the primary acoustic field is now
known as the Active Noise Control (ANC). A number of review publications
in this field are available, presenting different control algorithms, methods and
systems – see, for example, [14, 17–19]. The ANC technologies are now mature
enough for widespread use in many practical applications including reduction of
helicopter and aircraft cabin noise, car interior silencing systems, headphones,
mobile phones, and many others.

The ASAC systems, similar to the case of the AVC methods, act directly on
the controlled structure. They also use analogous means for sensing and exciting
vibrations. The main difference between the two presented approaches is in the
assumed cost function. The ASAC methods are aimed at modification of the
vibration pattern of the structures which are the primary noise sources in such
a way that the selected parameters characterizing the acoustic pressure field
distribution in the ambient space will be minimized. The research on ASAC
was initiated by Fuller and his co-workers [20–22] and continued by Hansen
and Snyder [23], Thi [24], Thomas [25], Baumann [26], Zieliński [27], and other
researchers. Most of the scientific investigations devoted to the ASAC systems
are focused on structures with specific mechanical and acoustic boundary con-
ditions which can be described using analytical formulas. A typical example
of such structures is simply supported rectangular plates placed in an infinite,
rigid baffle, investigated by researchers such as Fuller [11], Pan [28], Elliott [29],
and Meirovitch [30]. Baffled plates with arbitrary but uniform boundary con-
ditions were investigated by Berry [31]. Theoretical and experimental studies
concerning applications of the ASAC methods on circular plates can be found,
for example, in [32–34].

Depending on a type of the coupling between the input and the output of
the active control system, there are three different control approaches which are
used for active reduction of noise and vibrations:
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• feedforward control,

• feedback control,

• hybrid feedforward/feedback control.

In the feedforward approach the parameters of the primary excitation signal
must be either known in advance or measured. The information on the distur-
bance is fed to the input of the control system which respond in a pre-defined
manner. In this case total local cancellation of noise or vibrations is theoreti-
cally possible. The description and examples of implementations of such systems
can be found in [35–38]. In the feedback approach the response of the controlled
structure is measured and fed back to the input. The control performance of such
system depends on its open-loop feedback gain, which is in practice limited by
the stability issues. The detailed theoretical background and mathematical pre-
liminaries regarding such systems can be found, for example, in [39, 40]. The
hybrid approach combines the described features of the feedback and feedfor-
ward control. The description of the hybrid control systems and examples of
implementations are presented in [41–43].

The state variables describing the vibrations of the controlled structure are
usually chosen in such a manner that their unforced behavior can be considered
independently. Such an approach is called modal control [44]. In active noise and
vibration systems the state variables are often related to the eigenforms of vibra-
tions. However, an important problem connected with this form of description
of the system arises due to the fact that the dynamic response of the structure is
approximated by a finite number of modal components. If the assumed number
of modes is not large enough, the effect called spillover will occur, significantly
affecting the control performance [45]. On the other hand, a too large number
of the included harmonic components can increase the computational time and
cost above the limits imposed by the hardware specifications and demands of
the real-time operation. The objective function in the active noise and vibration
control systems is usually a quadratic function and the control process is per-
formed by linear-quadratic regulators (LQR, LQG) [32, 46]. Other approaches
presented in the literature are based on various kinds of PID controllers [32, 47–
49]. Depending on the architecture, the control system may be either centralized
(with a single data processing unit) or decentralized (with a number of inde-
pendent control loops). As it is shown in [50, 51], both approaches can achieve
a similar efficiency in noise and vibration reduction.
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Vibrations of thin beam and plate

structures

2.1 Theoretical considerations

The purpose of the present chapter is to introduce the assumptions, theo-
retical preliminaries, and the notation which are used in the following parts of
this study to describe vibrations of various considered structures. The informa-
tion contained herein is of a fundamental importance from the point of view of
the analysis of acoustic radiation, modal parameters of piezoelectric senors and
actuators and the active control theory presented further, as the quality of the
results concerning the vibrational parameters will significantly affect the results
of subsequent computations. Theoretical foundations underlying the mathemat-
ical and physical models describing vibrations of thin beam and plate structures
were developed as far back as in 18th and 19th century and now fall within the
basic problems of continuum mechanics. The relevant issues are discussed in
details, for example in [11, 13, 52, 53].

Although the investigations on active vibroacoustic control system presented
in this study concern rectangular plates, some parts of related theoretical, nu-
merical and experimental considerations are also devoted to vibrations of thin
beams. Due to a simpler formal description of those structures and availability
of analytical solutions of the relevant equations, the thin beams were chosen to
verify some concepts regarding possibilities of sensing and exciting vibrations
with piezoelectric transducers. Those issues are discussed in detail in Chapter 4.

The geometry of the considered problem is presented in Figure 2.1. The
length a and width b of the plate are assumed to be much greater than its
thickness hs. Analogously, the length ap and width bp of the piezotransducer
attached to the surface of the structure are assumed to be much greater than
the thickness hp. The orientation of the global Cartesian coordinate system is
chosen in such a way that the edges of the plate are parallel to the relevant axes.
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Figure 2.1. Geometry of the considered problem

Vibrational motion of the structures is assumed to occur only in the z di-
rection, hence, only one, corresponding component of the displacement field is
considered, namely, the deflection w = w(x, y, t). In the case of the so-called
beam structures it is assumed that the length a of a structure is much greater
than its width b and its thickness hs. The flexural waves propagate along the
x direction only and the deflection w is constant along the y direction, i.e.:
∂w
∂y

= 0. The vibrations are described using the classical Euler-Bernoulli beam
theory and the following equation (see, for example, [52]):

EI
∂4w

∂x4
+ ρS

∂2w

∂t2
= FBe, (2.1)

where E is the Young modulus of the isotropic material of the beam, I is the
cross-sectional moment of inertia, ρ is the density of the material, S is the
constant cross-section area of the beam, and finally, FBe = FBe(x, t)

[

N
m

]

is the
external load applied per length of the beam. The solutions of Equation 2.1
can be obtained analytically for arbitrarily chosen boundary conditions and
presented as a sum of trygonometric and hyperbolic functions. The relevant
formulas are presented, for example, in [52].

The solutions to the beam equation (2.1) can be written in a following,
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general form [52]:

w (x) = CB
1 sin

(

αBx
)

+CB
2 cos

(

αBx
)

+CB
3 sinh

(

αBx
)

+CB
4 cosh

(

αBx
)

, (2.2)

where CB
1 , . . . , CB

4 , and αB are constants whose values are determined by solving
Equation (2.2) for a given set of boundary conditions. The modal shape functions
of a beam structure obtained in such a manner are orthogonal, i.e., functions
Φm (x) and Φn (x) describing shapes of vibrational modes m and n, respectively,
obey the following condition:

a
∫

0

Φn(x)Φm(x)dx =







0 for m 6= n
a
∫

0

Φ2
n(x)dx for m = n

(2.3)

Similarly, plate structures considered in this study are thin in the sense of
the classical Kirchhoff’s plate theory. They are assumed to be made of homoge-
neous, isotropic material (thus, in the case of composites, such an approach can
be applied provided that the relevant effective material constants are known).
Their vibrations are then described by the following equation of motion (see,
for example, [52]):

D

(

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)

+ ρhs
∂2w

∂t2
= Fext, (2.4)

where D = Eh3
s

12(1−ν2)
is the flexural rigidity of the plate which depends on its

thickness hs, as well as on Young’s modulus E and Poisson’s ratio ν of the
material, while Fext = Fext(x, y, t)

[

N
m2

]

is the function of the external load
applied per surface area of the plate.

It is assumed that each of the considered structures is subjected to an ex-
ternal harmonic excitation with an arbitrary spatial distribution. The system
is linear and the structural damping is neglected, therefore, the response of the
structure is also harmonic, with the same frequency and phase as the excita-
tion. The present study focuses only on the low-frequency range (up to about
500 Hz), since higher frequency vibrations can be rather easily suppressed using
the well-known passive techniques – like thin soft liners, a porous core of panel
(see for example [54]). Taking all these assumptions into account, the response
of a structure can be approximated by a finite sum of N structural modes as
follows:

w(x, t) ∼=
N
∑

n=1

Φn(x)wn(t) = eiωt
N
∑

n=1

Φn(x)Wn
∼= eiωtw̃(x), (2.5)
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where (x) ≡ (x) in the case of beam structures and (x) ≡ (x, y) in the case
of plate structures, while Φn is the normalized shape function of mode n and
wn is the corresponding time-varying coefficient. When a harmonic motion is
considered – with ω = 2πf as the angular frequency of the external excitation
force (f being the frequency) – these coefficients are time-harmonic and can be
expressed as wn(t) = eiωtWn, where Wn are the (frequency-dependent) modal
amplitudes; w̃(x) is the (frequency-dependent) amplitude function of harmonic
vibrations.

Modal shape functions Φn are found by solving the corresponding eigen-
problems to the equations of motion (2.1) or (2.4), i.e., by setting their right-
hand-side terms to zero and seeking non-trivial (i.e., non-zero) solutions in the
form eiωtw̃(x). In the case of beams, regardless of their boundary conditions
(and, as a matter of fact, because of their ‘unidimensional’ simplicity), it is
always possible to find analytical solution consisting of a sum of trygonometric
and hyperbolic functions [52]. In the case of plate structures, however, even
when they are rectangular in shape, the analytical solutions can be found only
for some specific (‘geometrically-homogeneous’) boundary conditions and – in
general – it is required to use numerical methods, such as the Finite Element
Method, in order to solve such problems.

The function describing an external harmonic excitation force acting on a
plate can be expressed as follows:

Fext = Fext(x, y, t) = F̃exte
iωt, (2.6)

where F̃ext = F̃ext(x, y) denotes the spatial distribution of the amplitudes of
pressure on the surface of the plate. This function can also be decomposed into
an infinite series of modal components Φn of vibrations of the structure and
approximated by a finite number N of them:

F̃ext =

N
∑

n=1

Φn(x, y)Fn. (2.7)

The modal shape functions Φn are assumed to be orthogonal, thus:

a
∫

0

b
∫

0

Φn(x, y)Φm(x, y)dxdy =







0 for m 6= n,
a
∫

0

b
∫

0

Φ2
n(x, y)dxdy for m = n.

(2.8)

Taking into account the orthogonality property (2.8) the modal amplitudes can
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be expressed as follows:

Wn =

a
∫

0

b
∫

0

w̃(x, y)Φn(x, y)dxdy

a
∫

0

b
∫

0

Φ2
n(x, y)dxdy

, (2.9)

Fn =

a
∫

0

b
∫

0

F̃ext(x, y)Φn(x, y)dxdy

a
∫

0

b
∫

0

Φ2
n(x, y)dxdy

. (2.10)

The relation describing the modal amplitudes of vibrations of a plate induced
by an external, harmonic excitation force with the given angular frequency ω
and spatial pressure distribution F̃ext is sought. First, the unforced vibrations
are considered. Equation (2.4) is rewritten in the following form, with right-hand
side equal to 0:

∇4w̃(x, y)− k4sw̃(x, y) = 0, (2.11)

where:
ρhsω

2

D
= k4s . (2.12)

The coefficient ks = ω
cs

is the structural wavenumber and cs denotes the wave
propagation velocity in the considered plate.

Equation (2.11) is satisfied for the eigenmodes of vibrations of the plate
and the corresponding structural wavenumber values. Substituting relation (2.5)
into (2.11) the following formula is obtained:

∇4WnΦn(x, y)− k4nWnΦn(x, y) = 0, (2.13)

where kn is the wavenumber of mode n, equal:

kn =
ωn

cs
, (2.14)

ωn is the angular eigenfrequency of mode n.
Getting back to the forced vibrations of plate structures, equation (2.4) after

including relations (2.5)–(2.10) can be rewritten in the following form:

∇4w̃(x, y)eiωt − ρhsω
2w̃(x, y)eiωt =

1

D
F̃ext(x, y)e

iωt. (2.15)
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After dividing both sides of Equation (2.15) by eiωt and substituting the am-
plitude distribution functions with their modal decomposition coefficients, the
following relation is obtained:

N
∑

n=1

[

Wn∇4Φn(x, y)− k4eWnΦn(x, y)
]

=
1

D

N
∑

n=1

[Φn(x, y)Fn] . (2.16)

Both sides of Equation (2.16) are multiplied by a shape function Φm(x, y) of a
structural mode number m and integrated over the surface of the plate:

a
∫

0

b
∫

0

(

N
∑

n=1

[

Wn∇4Φn(x, y)− k4eWnΦn(x, y)
]

)

Φm(x, y)dxdy =

1

D

a
∫

0

b
∫

0

(

N
∑

n=1

Φn(x, y)Fn

)

Φm(x, y)dxdy.

(2.17)

Looking back at the plate equation (2.11) and substituting the modal de-
composition factors instead of the displacement amplitude distribution function
w̃(x, y) one can obtain:

N
∑

n=1

Wn∇4Φn(x, y) =
N
∑

n=1

k4nWnΦn(x, y). (2.18)

Substituting Equation (2.18) into Equation (2.17) one can obtain:

N
∑

n=1



Wn

(

k4n − k4e
)

a
∫

0

b
∫

0

Φn(x, y)Φm(x, y)dxdy



 =

1

D

N
∑

n=1

Fn

a
∫

0

b
∫

0

Φn(x, y)Φm(x, y)dxdy,

(2.19)

Taking into account the orthogonality property of the modal shape functions (2.8),
Equation (2.19) can be rewritten in the following form:

Wn =
Fn

D (k4n − k4e)
. (2.20)
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Substituting the relations (2.10) and (2.12) into Equation (2.20), the following
formula is eventually obtained:

Wn =
1

ρhs

a
∫

0

b
∫

0

F̃ext(x, y)Φn(x, y)dxdy

(ω2
n − ω2)

a
∫

0

b
∫

0

Φ2
n(x, y)dxdy

. (2.21)

Equation (2.21) connects the amplitude of vibrations of a structural mode
n with the frequency and amplitude distribution of an external, harmonic ex-
citation force. Thus, if the parameters of the excitation are known, then the
response of the plate can be computed as a sum of amplitudes of modal compo-
nents vibrating at the imposed angular frequency ω. The only exception is the
situation when the excitation frequency is equal to any of the eigenfrequencies
of vibrations of the plate. In such a case the amplitude of the corresponding
mode, computed using relation (2.21) would theoretically reach the infinity.
This conclusion obviously disagrees with observations, because the amplitudes
of vibrations of real-life structures are always finite. The reason for this discrep-
ancy is the fact that – according to the assumptions described previously – in
the considered, simple model damping and nonlinear effects are neglected. The
problem of determining the amplitudes of resonant vibrations and the results of
relevant experimental investigations are presented in Section 4.7 of this study.

2.2 Numerical simulations

Due to the undertaken assumptions, the methods, algorithms, and solutions
concerning active vibroacoustic control of plate structures developed and pre-
sented in this study should be applicable to plates with arbitrary boundary
conditions. Since there are no known analytical solutions of Equation (2.4) in
such a general case, the problem has to be solved numerically. Various kinds
of thin, rectangle shaped plates are considered in the present study. However,
no specific computational schemes that could be beneficial to use for special
cases of boundary conditions were employed, so the presented approaches can
be easily generalized into any mounting conditions.

The parameters of structural modes of vibrations of the considered plate
were determined using the Finite Element Method and the Comsol Multiphysics
software. A mapped mesh of rectangular elements was used to discretize the
surface of the structure. The simulations were performed for various meshes
consisting of from few dozens up to several thousands of elements. Some aspects
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regarding the influence of resolution of the discretization on the obtained results
are introduced in Section 2.3.

The mode shapes and eigenfrequencies of vibrations of the 20 cm wide, 30 cm
high, and 1 mm thick rectangle shaped aluminum plate structure determined
numerically are presented in Table 2.1. The results of simulations were verified
experimentally. The plate was clamped by a 6 cm long middle section of one of
its shorter edges, using a provided for this purpose protruding part. The plate
was excited to vibrate by a pair of piezoelectric actuators (the issues regarding
the use of piezoelectric transducers are described in detail in Chapter 4 of this
study). Very sharp resonant characteristics, with high amplitudes of vibrations
occurring only for specific excitation frequencies (which were assumed to be the
actual eigenfrequencies of the structure) were observed. The laser vibrometer
was used to determine the vibrational pattern in all cases (i.e., determine loca-
tions of points with minimum and maximum amplitudes of vibrations on the sur-
face of the plate). The overall agreement between the measurements and results
of simulations was fair. The shape functions of all of the considered structural
modes matched the corresponding patterns determined numerically. However,
some discrepancies between the measured and predicted values of eigenfrequen-
cies are also observed. The comparison of the results is presented in Table 2.1.
The accuracy of simulations varies for different structural modes, with errors
ranging from about 1 to 3 Hz (modes no. 1, 2, 3, 15) up to even over 20 Hz
in extreme cases (modes no. 9 and 12). The most important factor which is
probably responsible for the differences between experiments and simulations
are the mounting imperfections. For the computational purposes, the plate was
assumed to be perfectly clamped by a part of the shorter edge, while the hold-
ers used in a laboratory stand were never perfectly stiff and carried some of the
energy of vibrations.

The precise reconstruction of the actual boundary conditions in the numer-
ical model is crucial from the point of view of the obtained results. Figure 2.2
presents mode shapes and eigenfrequencies of six first forms of vibrations of
20 cm wide, 30 cm high, and 2 mm thick aluminum plate, for two various mount-
ing types (different than the one considered in Table 2.1). Mounting „A” denotes
cantilevered plate, while in the case of mounting „B” the plate is clamped only
by a 5 x 1 cm rectangular shaped middle section, at its shorter edge. As it can
be seen, most of the mode shapes are quite the same in both cases, however, the
change in boundary conditions from „A” to „B” results in occurrence of a new
form of vibrations (mounting „B”, 5th mode, eigenfrequency 260,35 Hz). The
influence of such a change on the eigenfrequency values is selective - 2nd and
4th modes (with frequencies 36,04 Hz and 213,42 Hz in case „A” and 54,71 Hz
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and 177,98 Hz in case „B”, respectively) seem to be the most sensitive to the
considered modification, while some other forms of vibrations are almost not
affected at all.

Figure 2.2. Mode shapes and eigenfrequencies of aluminum plate structure with dimensions
20 cm x 30 cm x 2 mm determined numerically using a 2-D plate model for two different types
of mountings. Mounting „A”: cantilevered plate; Mounting „B”: plate clamped by a part of one
of its shorter edges.
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Mode no. 1 Mode no. 2 Mode no. 3

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:
8 7,1 24,6 27,1 50,3 51,7

Mode no. 4 Mode no. 5 Mode no. 6

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:
82,3 90,7 127,2 120 144,9 155

Mode no. 7 Mode no. 8 Mode no. 9

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:
160,2 172,4 199 183 247,6 269

Mode no. 10 Mode no. 11 Mode no. 12

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:
261,4 276,6 337,8 320 383,9 406

Mode no. 13 Mode no. 14 Mode no. 15

Eigenfrequency [Hz] Eigenfrequency [Hz] Eigenfrequency [Hz]

Computed: Measured: Computed: Measured: Computed: Measured:
386,5 380 404,6 411 467,9 471

Table 2.1. Mode shapes and eigenfrequencies of aluminum plate structure with dimensions
20 cm x 30 cm x 1 mm determined numerically using a 2-D plate model, compared to the
resonant frequencies determined experimentally.
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2.3 Orthogonality of the eigenfunctions

In the case of plate structures with arbitrary boundary conditions the mode
shape functions cannot be obtained analytically and they have to be determined
with numerical methods, such as the Finite Element Method used in this study.
However, the results of numerical simulations only approximate the exact solu-
tion and the obtained eigenshape functions do not have to be strictly orthogonal.
The accuracy of computations depends, among other factors, on the resolution
of discretization. Due to the fact that the orthogonality property (2.8) underlies
the derived formulas describing the behavior of plate structures (2.21), the pos-
sible discrepancies at this point strongly affect the results presented in the other
parts of this study. For this reason it has been decided to investigate the influ-
ence of the resolution of discretization on the compatibility between the assumed
and true properties of the obtained mode shapes. The forms of vibrations of the
considered plate (presented in Table 2.1) were determined using several differ-
ent mesh resolutions, predefined in the Comsol Multiphysics software, ranging
from „extremely coarse” (150 elements) up to „extremely fine” (10000 elements).
Then, using a Matlab script the absolute values of products (2.8) of each with
each shape functions were determined and normalized with respect to the value
a
∫

0

b
∫

0

Φ2
n(x, y)dxdy for every considered mode n. The results concerning the first

eight forms of vibrations of the plate are presented in Tables 2.2–2.5.

Mode no. 1 2 3 4 5 6 7 8

1 1 0.015 0.238 0 0.259 0.066 0.017 0.252

2 0.015 1 0.003 0.229 0.026 0.025 0.163 0.042

3 0.238 0.003 1 0.003 0.038 0.002 0.007 0.291

4 0 0.229 0.003 1 0.024 0.014 0.011 0.019

5 0.259 0.026 0.038 0.024 1 0.069 0.007 0.032

6 0.066 0.025 0.002 0.014 0.069 1 0.034 0.269

7 0.017 0.163 0.007 0.011 0.007 0.034 1 0.017

8 0.252 0.042 0.291 0.019 0.032 0.269 0.017 1

Table 2.2. Normalized absolute values of products of shape functions determined using the
extremely coarse mesh resolution (150 elements)

In the ideal case, if all of the approximated shape functions would satisfy
the condition (2.8), then the values in all of Tables 2.2–2.5 should be equal to
1 on the diagonal and 0 everywhere else. In fact, many among the off-diagonal
elements in all of the presented tables are greater than zero. The higher the
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Mode no. 1 2 3 4 5 6 7 8

1 1 0 0.04 0.001 0.041 0.046 0.001 0.065

2 0 1 0.001 0.042 0.001 0 0.056 0.002

3 0.04 0.001 1 0.001 0.002 0.003 0.001 0.056

4 0.001 0.042 0.001 1 0 0.001 0.005 0

5 0.041 0.001 0.002 0 1 0.011 0 0.056

6 0.046 0 0.003 0.001 0.011 1 0 0.047

7 0.001 0.056 0.001 0.005 0 0 1 0.003

8 0.065 0.002 0.056 0 0.056 0.047 0.003 1

Table 2.3. Normalized absolute values of products of shape functions determined using the
coarse mesh resolution (1500 elements)

Mode no. 1 2 3 4 5 6 7 8

1 1 0 0.021 0 0.024 0.034 0.001 0.047

2 0 1 0 0.033 0 0 0.043 0.001

3 0.021 0 1 0.001 0.007 0.014 0 0.041

4 0 0.033 0 1 0 0 0.003 0.001

5 0.024 0 0.007 0 1 0.019 0.001 0.041

6 0.034 0 0.014 0 0.019 1 0 0.037

7 0.001 0.043 0 0.003 0 0 1 0.003

8 0.047 0.001 0.041 0.001 0.041 0.037 0.003 1

Table 2.4. Normalized absolute values of products of shape functions determined using the
normal mesh resolution (2300 elements)

Mode no. 1 2 3 4 5 6 7 8

1 1 0.005 0.003 0 0.003 0.005 0.001 0.012

2 0.005 1 0.003 0.013 0.001 0.001 0.016 0

3 0.003 0.003 1 0.004 0.015 0.02 0.003 0.014

4 0 0.013 0.004 1 0.001 0.003 0.003 0.001

5 0.003 0.001 0.015 0.001 1 0.018 0.003 0.008

6 0.005 0.001 0.02 0.003 0.018 1 0.001 0.018

7 0.001 0.016 0.003 0.003 0.003 0.001 1 0

8 0.012 0 0.014 0.001 0.008 0.018 0.001 1

Table 2.5. Normalized absolute values of products of shape functions determined using the
extremely fine mesh resolution (10000 elements)

value, the worse the orthogonality criterion between the two corresponding shape



2.3 Orthogonality of the eigenfunctions 39

functions is fulfilled. The worst situation is observed for the lowest („extremely
coarse”) mesh resolution - the products of some pairs of the eigenfunctions are
equal almost 0.3. In such case the corresponding modal components could not
be separated in the process of decomposition (2.9). Fortunately, the quality
of the obtained results improves significantly with the increasing of the mesh
resolution. For the „normal” mesh, consisting of 2300 elements, all of the off-
diagonal values are less than 0.05 and more than half of them is not greater
than 0.01. In this case, the results of numerical simulations can be regarded
as acceptable for further calculations. The approximation of the orthogonality
property of the modal shape functions is even better for the „extremely fine”
mesh, consisting of 10000 elements. In such case the higher off-diagonal value is
equal to 0.018, while more than two-thirds of the rest of them is less than 0.01.
However, the number of elements with the lowest values, below 0.001, is lower
than in the case of the less dense, „normal” mesh. This is probably due to the
numerical errors whose importance increases with the resolution.

The presented results clearly indicate that the denser the mesh used to dis-
cretize the surface of the plate (at least, in the considered range of resolutions)
is, the better the orthogonality criterion between the determined modal shape
functions is fulfilled. On the other hand, increasing the number of elements in
simulations also increases the computational time and cost. However, due to the
simplicity of the considered problem and the fact that only limited number of
low-frequency forms of vibrations are of interest, even simulations carried out
using the „extremely fine” mesh take less than one minute on a standard per-
sonal computer. The results of such simulations, with a relatively dense mesh,
are used for further computations described in the present study.
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3

Acoustic radiation of vibrating plate

structures

3.1 Introduction

Acoustic radiation of different vibrating structures is a topic of great interest
and has been the subject of numerous theoretical and experimental scientific
investigations. The importance of this phenomenon is implied by the fact, that
actually most of the sounds observed in the nature or generated – intentionally
or not – by people or machines result as a coupling between vibrating surfaces
and the acoustic medium. Thus, it is highly desirable to be able to accurately
model the distribution of the acoustic pressure generated in this manner in the
space surrounding the considered structures. Such predictions allow to control
the ambient sound field by controlling the vibrations of the sources and can
be used in countless practical applications. In this context, one of the most
commonly considered types of vibrating elements are the plate structures, due
to their usefulness in modeling many real-world mechanical systems on the one
hand and the ease of description on the other.

The very first attempts of creating formal description of dependencies be-
tween some mechanical properties of different structures and parameters of
sounds emitted by those structures during vibrations actually took place as
far back as in ancient times. In the 6th century BC Pythagoras was investigat-
ing sounds emitted by strings of different lengths and created the mathematical
foundations of determining pitch [55]. However, it was not until the 19th cen-
tury when Lord Rayleigh developed and described the mathematical models
concerning acoustical properties of vibrating pistons placed in an infinite, rigid
baffle [56]. His works initiated research on the acoustic radiation characteristics
of various vibrating plate structures (see, for example, [11, 53, 57]). The meth-
ods of determining the distribution of the acoustic pressure generated in this
manner are still being intensively developed.
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Theoretical considerations and results of numerical simulations concerning
the far-field acoustic radiation characteristics of baffled plates will be presented
in Section 3.3 of this chapter. The differences between radiation patterns of
various vibrational modes in the low-frequency range will be introduced and
discussed. As it will be shown, in the case of structures relatively small, as com-
pared to the acoustic wavelength, the forms of vibrations may be divided into
two categories, basing on the computed distributions of generated sound pres-
sure levels: the „monopole” and the „dipole” modes. According to the properties
of elementary acoustic sources, the latter are weak radiators.

The presence of the acoustic medium which is necessary for acoustic waves to
propagate, influences the vibrational characteristics of the considered structure
which is the source of the radiation. The problem of determining the eigen-
frequencies and corresponding modal shape functions of vibrating plate struc-
tures submerged in different media has been the topic of numerous scientific
investigations (see, for example, [58–62]), which resulted in the development of
various computational methods and algorithms suitable for different systems
and boundary conditions. Despite the fact that in many cases the influence of
the acoustic medium cannot be neglected (this is particularly true for heavy
fluids, such as water), if the vibrating thin plate structures are relatively small
as compared to the acoustic wavelength and the surrounding medium can be
treated as a light fluid - such as, for example, air - then it can be shown [63]
that in such case the eigenfrequencies and vibrational mode shapes of the plate
are not significantly affected by the presence of the medium. This means that
the mechanical analysis of the vibrational characteristics can be decoupled from
the acoustic analysis and performed independently for the in vacuo case. The
obtained results may be then used for the computation of the distribution of
generated acoustic pressure by introducing them as the boundary conditions on
the surface of the considered structure. The issues concerning the influence of
different acoustic media on vibrational characteristics of plates will be discussed
more in detail in Section 3.2.

Sections 3.4 and 3.5 concern free-field vibroacoustic emission of thin, rectangle-
shaped plate structures. Analytical solutions describing either selected vibra-
tional characteristics or parameters of the generated acoustic pressure field are
known only for a limited number of some special cases of prescribed bound-
ary conditions for such structures, as, for example, simply-supported, baffled
plates [11, 53]. In the general case such exact solutions cannot be given and the
considered problem has to be solved numerically. Taking into account that the
considered ambient medium is air, the eigenfrequencies and the corresponding
vibrational mode shapes are determined independently from the acoustic anal-
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ysis using the Finite Element Method. The acoustic pressure field distribution
could also be computed using the same method but it would require to expand
the mesh of elements into a large area of space surrounding the vibrating plate
and would significantly increase the computational cost. Moreover, due to the
fact that the discretized area has a finite volume and the considered domain is
unbounded, some special techniques for solving the exterior acoustic problems,
such as Perfectly Matched Layers or Infinite Elements, should be implemented
additionally. For that reason the Boundary Element Method was chosen as a
more appropriate tool for the acoustic analysis in the specified case.

The Boundary Element Method has been extensively developed since the
sixties of the last century for the purposes of various research and engineer-
ing fields. Some preliminaries of this method with examples of applications in
mechanics, acoustics, and electromagnetics can be found in [64–67]. In the con-
sidered case of the free-field acoustic radiation of the thin, rectangular plate two
of the specific features of the Boundary Element Method make it particularly
convenient to use. First, the dimension of the distretized domain is reduced by
one, compared to the Finite Element Method model, and includes only the flat
surface of the plate. Second, the fundamental solution of the problem which is
used for the formulation of the solved equations obeys the Sommerfeld radiation
condition at infinity. This means that there is no need in implementing any ad-
ditional computational techniques to take into account the unbounded character
of the acoustic domain. On the other hand, some complexities in the computa-
tional process arise due to the fact that the considered problem is an exterior
acoustic problem with an open boundary surface for which the only applicable
version of the chosen numerical method is the Indirect Variational Boundary
Element Method [68] which will be referred to further on as the IVBEM. The
variational computational scheme introduces double surface integrals and highly
singular terms to the solved equations. In the relevant literature similar issues
concerning plate structures have already been described (see, for example, [69]).
However none of the sources include the detailed information about the imple-
mentation of the procedures for solving the derived equations. The importance
of such information is associated with some significant simplifications that can
be introduced at this stage by taking into account the simple geometry and
some special features of the considered problem. For that reason these impor-
tant issues are included in the present study. In order to efficiently deal with
the mentioned difficulties a dedicated algorithm has been developed and imple-
mented using the Matlab environment. The results of the numerical simulations
are compared with the results of the experimental investigations performed in
an anechoic chamber to validate the accuracy of the predictions.
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3.2 Structural-acoustic coupling

3.2.1 Outline

Most of the scientific investigations devoted to the problem of acoustic radi-
ation of vibrating structures focus on vibroacoustic emission in air, considering
simple but representative structural elements, such as membranes, beams, and
plates with different boundary conditions. Due to the relatively low density of
air, the vibration characteristics of structures are not significantly altered by the
inertial loading introduced by a medium and the problem of determining eigen-
frequencies and corresponding mode shapes can be simplified to the in-vacuo
case. A similar procedure applied to a structural element submerged in a heavy
fluid, such as water, would result in a total discrepancy between predictions and
measurements, as the influence of the medium is in this case crucial.

The influence of fluid loading on the acoustic radiation characteristics of the
structural elements has been investigated by many scientists. Some analytical
solutions for specific cases were developed by Maidanik and Kerwin [58] and
Stuart [59, 60]. Many authors considered the impact of the submersion in water
on the plate’s eiegenfrequencies and eigenmode shapes. Different methods have
been developed to solve this problem. Some of them assume that the structural
mode shapes remain unchanged and focus only on the alteration of the natural
frequencies of the plates [70, 71]. Additional factors are often introduced to
model the inertial loading by mass incrementation of the vibrating structure
[70–73]. Other, more general approaches, use Rayleigh-Ritz method to compute
both mode shapes and eigenfrequencies [72, 74]. The influence of fluid loading
is different for plates having contact with water on one or both sides.

One of the main areas in which hydroacoustic emission is crucial is military
technology. In past decades a lot of effort has been put into reducing noise
generated by marine and navy vessels. This is especially true of the submarines,
for which stealth operation is the most desirable. Knowledge of the vibrational
characteristics of the hulls of vessels is also an important issue for the safety
reasons [75]. The operating parameters of the powertrains of the vessels must
meet the criteria resulting from the eigenfrequency analysis of the hulls having
contact with water.

3.2.2 Numerical model

The solution of the eigenvalue problem of vibrations of a fluid-loaded struc-
ture will be analyzed on the example of a rectangle-shaped, 20 cm wide, 30 cm
high, and 1 mm thick aluminum plate placed in an infinite, rigid baffle, having
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contact with various kinds of acoustic media on the one side. Notwithstanding
the fact, that only air is in the scope of interest of the present study, heavy-fluid
case (represented by water) is also considered in this section in order to better
evaluate the influence of medium parameters on the vibrational characteristics
of a submerged structure. Free boundary conditions are assigned to all the four
edges of the plate. Damping is neglected and only transverse motion of the
structure is taken into account. The solid domain - represented by the plate - is
described with the following constitutive equation:

ρω2w + n∇σ = −Fext, (3.1)

where ρ is the density of the plate, ω is angular frequency of vibrations, w is
the displacement in direction perpendicular to the plate’s surface, σ is the stress
tensor, n is the unit vector normal to the plate’s surface and pointing towards
the fluid, and Fext denotes external pressure applied to the structure.

The liquid domain is described with the following pressure acoustics equa-
tion:

∆p+
ω2

c2w
p = 0, (3.2)

where ρw and cw denote the density and acoustic wave velocity of the considered
medium.

Equations (3.1) and (3.2) are coupled via following boundary conditions
assigned on the solid-fluid interface:

n · ∇ p

ρw
=

∂2w

∂t2
(3.3)

σ · n = pn (3.4)

Equation (3.3) implies the equality of normal accelerations between the adjoin-
ing areas of plate and the medium, while Equation (3.4) imposes the equality
of action and reaction force values between the domains.

Equations (3.1) and (3.2) with boundary conditions (3.3) and (3.4) were
solved to find the natural frequencies of the submerged plate and corresponding
structural mode shapes. Numerical simulations have been performed for three
different situations: plate with surrounding water, plate with surrounding air,
and for plate without any external load assumed. The low-frequency range only
was considered, taking into account the first eight eigenmodes (without rigid
body motion solution at frequency f = 0).

The problem has been solved using the Finite Element Method and the
COMSOL Multiphysics software. The acoustic domain was represented by a
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hemisphere with a radius large enough to approximate the free-field environ-
ment and plane wave radiation boundary condition set on the surface. The base
plane of the hemisphere represented an infinite baffle with a rigid wall boundary
condition. The plate was positioned in the center of the base plane with all of
the edges free and was in contact with the acoustic medium on the one side.
The geometry and discretization of the problem are presented in Figure 3.1.
The assumption of far-field approximation by the hemisphere was validated by
comparing the results of simulations obtained for different radii values.

Figure 3.1. Baffled plate in contact with water on its one side: geometry and discretization.

3.2.3 Results and discussion

Numerical simulations have been performed for three different situations:
plate with surrounding water, plate with surrounding air, and plate without any
external load assumed. The latter involved a simple, two-dimensional model of
the structure without a medium and baffle. It has been found that the shapes of
the corresponding structural modes in all three considered cases - for air, water
and the in vacuo case - showed no significant differences. The obtained results
are presented in figure 3.2. The corresponding eigenfrequencies, determined for
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each case, are presented in Table 3.1.

Figure 3.2. Mode shapes of the first eight forms of vibrations of the plate with all edges free
(without rigid body motion solution at frequency f = 0).

Eigenfrequencies computed for the air and for the in vacuo case are almost
the same, the differences are small enough to be considered as numerical errors
- especially taking into account the fact that higher values were obtained for
the case without inertial loading. This conclusion confirms that omitting the
influence of the acoustic medium does not significantly affect the results of the
vibrational analysis performed for relatively small plate structures submerged
in a light fluid in the low-frequency range.

Submerging the plate in water causes a reduction of the values of natural
frequencies by the factor of approximately 3, as compared to the results obtained
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Mode number Eigenfrequency [Hz]
No load Air Water

1 54, 77 54, 55 15, 57
2 58, 44 58, 26 15, 97
3 126, 46 126, 74 40, 01
4 136, 47 136, 4 42, 63
5 157, 95 161, 33 51, 73
6 183, 43 184, 38 60, 61
7 234, 9 239, 5 82, 54
8 269, 98 274, 75 97, 07

Table 3.1. Eigenfrequencies determined numerically for three different cases.

for two other considered cases. This observation implies the fact that if the
acoustic medium is a heavy fluid, then the influence of a inertial loading cannot
be omitted and the numerical model has to include the coupling between the
structure and the environment. Solving such a problem is numerically expensive
and requires discretization of large volume of the ambient space.

The described numerical model can also be used to determine the acous-
tic radiation characteristics of the vibrating plate. Basing on the solution of
Equation (3.2) in the fluid domain, the distribution of the acoustic pressure in
ambient space can be computed. The results concerning the plate having con-
tact with water on one side for four selected eigenmodes are presented in figure
3.3.

As it can be seen, close to the surface of the structure the sound field dis-
tribution is complex and radiation characteristics vary significantly for different
forms of vibrations. Numerous local maxima and minima of the amplitude of
acoustic pressure are observed. The further from the surface, the acoustic radi-
ation pattern becomes more regular. The sound propagation velocity in water
is over four times greater than in air and thus the dimensions of the submerged
plate compared to the wavelength in the considered low-frequency range are
low. For that reason the plate - regarded as an acoustic antenna - reveals no
significant directivity gain. The far-field radiation characteristics of baffled plate
structures are described more in detail in the following section.

3.3 Far-field acoustic radiation of a baffled plate

Far-field acoustic radiation of a rectangle-shaped plate structure placed in
an infinite, rigid baffle is considered. Such structures and boundary conditions
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Figure 3.3. Distribution of the amplitude of acoustic pressure in the near-field zone of the
vibrating plate structure submerged in water.

provide a starting point for numerous scientific investigations devoted to active
vibroacoustic control systems and methods (see, for example, [11, 26, 29]). This
is due to the fact that the sound field distribution in this case can be described
with relatively simple analytical formulas. The foundations of the relevant math-
ematical model have been developed as far back as in the eighteenth century by
Lord Rayleigh [56]. However, the experimental validation of the results may in
general turn out to be troublesome. This is especially true in the considered case
of arbitrary boundary conditions, as, for example, the assumption of mechan-
ically free edges of the structure is hardly compatible with the requirement of
no acoustic gap between the plate and the baffle. For that reason, the described
approach is only briefly introduced in the present study and exemplified with
the results of relevant numerical simulations, in order to exhibit some specific
features of the generated sound field distribution in the low-frequency range and
to demonstrate the contrast in the computational complexity as compared to
a more general case of unbaffled plate that will be described in the following
sections. Additionally, the presented formulas may also be used in deriving the
modal radiation coefficients, introduced in Section 5.1, for computation of the
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cost function in the control equations.

Figure 3.4. Acoustic radiation of a baffled plate – geometry of the problem.

It is assumed that the plate is excited to vibrate by a harmonic force. Due
to the structural-acoustic coupling the induced flexural waves in the structure
cause the radiation of the acoustic waves in air (which is assumed to be the
acoustic medium of the ambient space). The geometry of the considered problem
is illustrated in Figure 3.4. The acoustic pressure p in any point r of the far-field
ambient half-space with given radial coordinates (r, φ,Θ) is described using the
Rayleigh’s integral with following equation [11, 53, 76]:

p(r) =
iωρae

ika|r|

2π |r|

N
∑

n=1



Wn

a
∫

0

b
∫

0

Φn (x, y) e
ika∆rdxdy



 , (3.5)

where ka is the wavenumber of the acoustic wave, ρa is the density of air, Wn

is the amplitude of the vibrational mode n with the shape function Φn and ∆r
is approximated by the following relation:

∆r ≈ −x sinΘ cosφ− y sinΘ sinφ (3.6)

Considering the vibrating plate as an acoustic antenna, the far-field radiation
beam pattern describing its directional characteristics may be introduced. The
relevant function is defined as a ratio of the amplitude of the generated acoustic
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pressure in a given direction (φ,Θ)) to the value of the amplitude of the acoustic
pressure in antenna boresight direction (φB,ΘB):

Ξ (φ,Θ) =

[

p (r, φ,Θ)

p (r, φB,ΘB)

]

r=const

. (3.7)

The radiation beam pattern is frequency-dependent, hence, in order to compute
the far-field acoustic directional characteristics of the baffled, vibrating plate,
both the amplitudes of the involved modal components and the excitation fre-
quency have to be known.

The acoustic beam patterns of the considered structures have been deter-
mined numerically on an example of a thin, plate structure made of aluminum
placed in an infinite, rigid baffle. The plate is 40 cm long, 25 cm wide, and
1 mm thick. It is assumed that the structure is clamped at some part of one
of its shorter edges and all the other boundaries are free. The computations
were carried out in two stages. First, the eigenfrequencies and the shapes of the
corresponding structural vibration modes had been determined using the finite
element analysis. To this end, Comsol Multiphysics software had been used
and the solutions obtained for the two-dimensional plate model had been saved
in a file. Based on the computed vibrational characteristics, the far-field acous-
tic pressure distribution was determined using the relations (3.5) and (3.6). The
results from the file were imported by a Matlab script and numerical integra-
tion over the relevant regions as carried out for different structural modes and
vibration frequencies.

Some exemplary results of the numerical simulations are presented in Fig-
ure 3.5. Three-dimensional acoustic beam patterns for two exemplary structural
modes of the thin plate structure vibrating at frequency 400 Hz are shown. As it
can be seen, the results may differ significantly for various forms of vibrations.

The examples presented in Figure 3.5 are the representative class of solu-
tions of the described problem. Due to the relatively small dimensions of the
considered plate structure as compared to the acoustic wavelength in the low-
frequency range, all the modes reveal either acoustic monopole- or dipole-like
radiation beam patterns. The “dipole” modes are found to be weak acoustic
radiators and are in general connected with the antisymmetric shape functions
of the corresponding forms of vibrations. In contrast, the efficiency of far-field
sound radiation of the ”monopole” modes may be very high. Such observations
are essential in terms of view of the active vibroacoustic control of the considered
structures.
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Figure 3.5. Three-dimensional acoustic radiation beam patterns of two exemplary structural
modes of the thin plate structure vibrating at frequency 400 Hz.

3.4 Free-field acoustic radiation – BEM model

3.4.1 Theoretical background

The geometry of the considered problem is presented in Figure 3.6. It is as-
sumed that the considered rectangular plate is positioned in the plane z = 0 of
the global XYZ coordinate system and that one of its edges has the coordinates
(x, y) equal (0, 0). The plate is thin and its thickness is neglected in further con-
siderations. Due to the harmonic character of the considered excitation force and
taking into account the fact that the system is linear and undamped, the acous-
tic pressure p at any point r of the surrounding space satisfies the Helmholtz
equation:

∆p+ k2p = 0, (3.8)

where k is the wavenumber of the radiated acoustic wave.

We solve the equation (3.8) for Neumann boundary conditions imposed on
the whole surface Ω of the considered plate:

∂p

∂n

∣

∣

∣

∣

(x,y)

= −iωρaVn (x, y) for (x, y) ∈ Ω. (3.9)
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Figure 3.6. The geometry of the considered problem: plate domain.

Here Vn (x, y) is the amplitude of the normal velocity of the surface of the
plate at a point with coordinates (x, y) and ω is the angular frequency of the
radiated acoustic wave. For the sake of brevity the coordinates will be omitted
in the formulas presented further, unless they are important for clarity of the
description. The distribution of the amplitude value of the normal velocity on
the surface Ω is computed directly from the Finite Element Method model of
the plate vibrations and scaled to the results of measurements carried out using
a laser vibrometer.

The considered problem of the plate radiation in the free space is an exterior
acoustic problem with an open boundary surface. It may be regarded as a special
case of an exterior problem with a closed boundary by considering both sides
of the plate as separate surfaces denoted Ω+ and Ω−, where Ω = Ω+ ∪Ω−. We
now introduce the following quantities:

• the single layer potential:

σ (ra) =
∂p (r+a )

∂n
− ∂p (r−a )

∂n
, (3.10)

• the double layer potential:

µ (ra) = p
(

r
+
a

)

− p
(

r
−
a

)

, (3.11)

where r+a and r−a denote the position of the acoustic point sources at surfaces
Ω+ and Ω−, respectively. We can now rewrite the boundary conditions (3.9) as
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follows:
∂p (r−a )

∂n
= −iωρaVn

(

r
−
a

)

on Ω−, (3.12)

∂p (r+a )

∂n
= −iωρaVn

(

r
+
a

)

on Ω+. (3.13)

By assuming for thin plate Ω+ ≈ Ω− ≈ Ω and substituting Equations (3.12)
and (3.13) into Equation (3.10) we obtain:

σ = 0 and
∂p

∂n
= −iωρaVn on Ω. (3.14)

The acoustic pressure at any point of the ambient space indicated by a vector
r is described with the following boundary integral formulation [68]:

p (r) =

∫

Ω

µ (ra)
∂G (r, ra)

∂n
dΩ (ra) (3.15)

where G is the Green’s function, which satisfies the following equation:

∆G (r, ra) + k2G (r, ra) = δ (r− ra) , (3.16)

where δ (·) denotes the Dirac delta function. The considered fundamental solu-
tion should also satisfy Sommerfeld radiation condition:

lim
|r−ra|→∞

|r− ra|
(

∂G (r, ra)

∂|r− ra|
+ ikG (r, ra)

)

= 0. (3.17)

Fulfillment of the condition (3.17) ensures that the obtained solution is valid
for the free-field acoustic environment. The considered Green’s function in the
three-dimensional space has the form:

G (r, ra) =
e−ik|r−ra|

4π |r− ra|
. (3.18)

By taking into account the boundary conditions (3.14) the integral equation
(3.15) can be rewriten as:

−iωρaVn =

∫

Ω

µ (ra)
∂2G (r, ra)

∂n (r) ∂n (ra)
dΩ (ra) . (3.19)
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Equation (3.19) has to be solved for the unknown double layer potential µ on Ω.
To this end, the equivalent variational statement is used, namely, the solution
µ will minimize the following functional [68]:

J = 2

∫

Ω

iωρaµ (r)Vn (r) dΩ (r) +

∫

Ω

∫

Ω

µ (r)µ (ra)
∂2G (r, ra)

∂n (r) ∂n (ra)
dΩ (r) dΩ (ra) ,

(3.20)
The properties of the Green’s function and the continuity of µ allow to rewrite
the second, highly singular integral in an equivalent, less singular form, better
suited for numerical calculations [68, 69]:

∫

Ω

∫

Ω

µ (r)µ (ra)
∂2G (r, ra)

∂n (r) ∂n (ra)
dΩ (r) dΩ (ra) =

∫

Ω

∫

Ω

G (r, ra)
[

k2µ (r)µ (ra) (n (r) · n (ra))−

− ((∇× µ (r)) · (∇× µ (ra)))] dΩ (r) dΩ (ra) ,

(3.21)

where:

∇× µ = n×∇µ (3.22)

and n is the unit vector normal to the surface of the boundary plate.

The considered area Ω is discretized into a number ne of small boundary
elements with corresponding areas Ωe , e ∈ {1, 2, . . . , ne} and nn nodes defined
at some particular locations of the elements. nen is the number of nodes be-
longing to a single element. Note that the elements may (and usually do) share
common nodes, so, in general, nn 6= nenen. It is assumed that the sought double
layer potential at every single element can be approximated by a product of the
unknown nodal values µi and the element shape functions N e

i (which take the
value of 1 in the corresponding node i and are 0 in all other nodes), namely:

µ (r) ≈ µ̂ (r) =

nen
∑

i=1

N e
i (r)µi (r ∈ Ωe) . (3.23)

The discretized form of the functional (3.20) can be now written as:

J =

nn
∑

i=1

nn
∑

j=1

µiBijµj − 2

nn
∑

i=1

µiCi, (3.24)
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where:

Bij =

∫

Ωi

∫

Ωj

G (r, ra)
[

k2Ni (r)Nj (ra)−

− (∇Ni (r)× n) · (∇Nj (ra)× n)] dΩi (r) dΩj (ra)

(3.25)

and

Ci = −iωρaV
i
n

∫

Ωi

Ni (r) dΩi (r) , (3.26)

where V i
n denotes the normal velocity at point i. The global shape functions

Ni (r) are defined in the whole boundary surface Ω. Inside every element to
which node i belongs functions Ni are identical to the corresponding local shape
functions N e

i and are zero in all other domains. Thus, the integration surfaces
Ωi and Ωj include all of the elements that contain interpolation nodes i and j
respectively.

To find the double layer potential values in the specified nodes using the
variational scheme the following equation is solved:

∂J

∂µ
= 0, (3.27)

which yields:

B µ = C, (3.28)

where B is the (nn × nn) size matrix composed of elements Bij described by
relation (3.25), C is the (nn × 1) vector composed of elements Ci described by
relation (3.26) and µ is the (nn × 1) vector of unknown nodal values of the
double layer potential.

Now, the acoustic pressure in any point of the ambient space is given with
the following relation:

p (r) = D
T µ, (3.29)

where the elements of vector D are given with the following formula [68]:

Di =

∫

Ω

Ni (ra)
∂G (r, ra)

∂n (ra)
dΩ (ra) . (3.30)

Assuming that the observation point indicated by the vector r has coordinates
(x, y, z) and the source point on the plate indicated by the vector ra has coor-
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dinates (xa, ya, 0) the normal derivative of Green’s function is equal:

∂G (r, ra)

∂n (ra)
=

ze−ik
√

(x−xa)
2+(y−ya)

2+z2
(

−1− ik
√

(x− xa)
2 + (y − ya)

2 + z2
)

(

√

(x− xa)
2 + (y − ya)

2 + z2
)3 .

(3.31)
After solving Equation (3.28) with the coefficients (3.25) and (3.26) for the

unknown nodal values µi of the double layer potential in the whole considered
plate domain Ω, Equation (3.29) is solved only for those points of the ambient
space in which the values of the acoustic pressure are sought.

3.4.2 Implementation – the algorithm

An original, dedicated algorithm for computation of the free-field acoustic
radiation characteristics of vibrating rectangular thin plate structures has been
developed and tailored to exploit the simple geometry of the considered prob-
lem (see Fig. 3.6). The algorithm is based on the IVBEM method and allows
to significantly reduce computational time and cost, as compared to a straight-
forward implementation of the relevant formulas. The details of the proposed
approach are described further.

The domain Ω is divided into ne identical, first-order rectangular boundary
elements. The elements are arranged in nrow rows and ncol columns. The resolu-
tion of the division can be adapted to the considered form of vibrations with an
adequate reserve as the computation time and cost will be significantly reduced
by taking the advantage of the occurring symmetries. Inside every single ele-
ment a local coordinate system (ξ, η) , ξ ∈ 〈−1; 1〉 , η ∈ 〈−1; 1〉 is defined, with
axes parallel to the X and Y axes of the global coordinate system respectively.

The application of the linear shape functions definitely ensures the conver-
gence of solution, as they satisfy the completeness and compatibility conditions
for the considered problem [68]. The chosen functions defined for any boundary
element e are as follows:

N e
1 (ξ, η) =

1

4
(1− ξ) (1− η) ,

N e
2 (ξ, η) =

1

4
(1 + ξ) (1− η) ,

N e
3 (ξ, η) =

1

4
(1 + ξ) (1 + η) ,

N e
4 (ξ, η) =

1

4
(1− ξ) (1 + η) .

(3.32)
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Basing on the chosen element shape functions and taking into account the
fact that due to the considered geometry and mesh properties a single inter-
polation node can belong to one, two or four neighbouring boundary elements,
the coefficients Bij , Ci, and Di are computed using equations (3.25), (3.26) and
(3.31). The surface integrals are determined numerically using the four-point
Gauss integration scheme, except for the cases in which the integration sur-
faces overlap over the same boundary element. In such a situation the results
obtained with the standard numerical method would be burdened with a sig-
nificant error due to singularities in the integrand. To avoid this obstacle the
special algorithm for dealing with such double surface integrals with 1

R
singular-

ity proposed by Wang and Atalla [69, 77] has been implemented. The algorithm
is briefly described below.

Taking into account the form of the Green’s function for the considered
problem, given with Equation (3.18) and transforming Equation (3.25) into the
local coordinate system, the double surface integral over the same boundary
element may be expressed as follows:

∫

Ωe
i

∫

Ωe
j

G (r, ra)
[

k2N e
i (r)N

e
j (ra)−

− (∇N e
i (r)× n) ·

(

∇N e
j (ra)× n

)]

dΩe
i (r) dΩ

e
j (ra) =

=

1
∫

−1

1
∫

−1

1
∫

−1

1
∫

−1

e−ikr−ra

4π |r− ra|
[

k2N e
i (r)N

e
j (ra)−

− (∇N e
i (r)× n) ·

(

∇N e
j (ra)× n

)]

JiJjdξidηidξjdηj ,

(3.33)

where Ji and Jj are the Jacobians of the transformation of the local coordinate
system to the global coordinate system which satisfy the following relation:

dΩe
i = Jidξidηi, dΩe

j = Jjdξjdηj . (3.34)

Taking into account the considered geometry:

Ji = Jj =
ae be

4
, (3.35)

where ae and be are the length of the edges of the rectangular boundary element
e parallel to the X and Y axis of the global coordinate system respectively.
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Equation (3.33) can be now rewritten in the following form:

1
∫

−1

1
∫

−1

1
∫

−1

1
∫

−1

e−ik(r−ra)

4π |r− ra|
[

k2N e
i (r)N

e
j (ra)−

− (∇N e
i (r)× n) ·

(

∇N e
j (ra)× n

)]

JiJjdξidηidξjdηj =

=

1
∫

−1

1
∫

−1

1
∫

−1

1
∫

−1

f (ξi, ηi, ξj , ηj)

re
dξidηidξjdηj ,

(3.36)

where

f (ξi, ηi, ξj , ηj) =
e−ikR

4π

[

k2N e
i (r)N

e
j (ra)−

− (∇N e
i (r)× n) ·

(

∇N e
j (ra)× n

)]

JiJj
re

R
,

(3.37)

R = |R| = |r− ra| =
√

(xi − xj)
2 + (yi − yj)

2, (3.38)

and

re =

√

(ξi − ξj)
2 + (ηi − ηj)

2. (3.39)

The integration variables are converted as follows:

xi = xp +
ae (1 + ξi)

2
, (3.40)

xj = xp +
ae (1 + ξj)

2
, (3.41)

yi = yp +
be (1 + ηi)

2
, (3.42)

yj = yp +
be (1 + ηj)

2
, (3.43)

where (xp, yp) are coordinates of the center point of element e. Thus:

R (ξi, ηi, ξj , ηj) =

√

[

ae

2
(ξi − ξj)

]2

+

[

be

2
(ηi − ηj)

]2

. (3.44)

The integral (3.36) is computed using four-point numerical scheme described in
[77]:

1
∫

−1

1
∫

−1

1
∫

−1

1
∫

−1

f (ξi, ηi, ξj , ηj)

re
dξidηidξjdηj =

Mm
∑

m=1

Mn
∑

n=1

Mo
∑

o=1

Mp
∑

p=1

f (ξm, ηn, ξo, ηp)Wmnop,

(3.45)
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where:

Mm = Mn = Mo = Mp = 4 (3.46)

denote the Wang’s integration order. The values of weight coefficients Wmnop

and the coordinates of the integration points ξm, ηn, ξo, ηp are given in [77].

The proposed algorithm for determination of the free-field acoustic radiation
characteristics of the vibrating plate structure includes the following steps:

1. Generation of a mesh consisting of identical, rectangular elements cover-
ing the whole surface of the considered plate with a given resolution,

2. Interpolation of the values of the normal velocities in the nodes basing
on the scaled results of the FEM analysis of the eigenvalue problem for
the considered plate.

3. Computation of the elements of matrix B and vectors C and D using
formulas (3.25), (3.26), (3.30), and (3.31).

4. Solution of Equation (3.28) for the unknown double layer potential values
in the interpolation nodes.

5. Solution of Equation (3.29) for the unknown values of the acoustic pres-
sure in selected points of the ambient space.

6. Postprocessing and visualization of the results.

Notice that step 3 is crucial from the point of view of the computational time
and cost. It involves each with each element double surface integrals for every
corresponding interpolation node to compute the coefficients Bij , and for that
reason it is the bottleneck of the whole process, as the number of the required
operations increases dramatically with increasing resolution of discretization.
Moreover, due to the fact that the coefficients Bij are frequency-dependent, this
step of the algorithm has to be repeated for every single considered frequency
of vibrations. Thus, it is highly desirable to reduce the duration of this step
as much as possible. The following features concerning this problem should be
taken into account:

• The Green’s function for the considered problem (3.18) is symmetrical
with respect to its arguments r and ra.

• The unit vector n is constant on the whole surface of the boundary plate.

• The Jacobians (3.35) are equal for all elements.

• The values of the double surface integral over a single boundary element
(3.36) concerning the same pairs of the shape functions are equal for all
elements of the mesh.
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Basing on the observations mentioned above two important conclusions regard-
ing the solved equations may be derived. The first, quite obvious, an attribute
of the matrix B that should be noticed is that it is symmetrical. This property
actually results from the variational formulation used for the problem and is
common for all IVBEM based models. The symmetry of the matrix allows to
reduce the number of the computed elements, however, the overall computa-
tional cost is still high as the number of required operations increases rapidly
with increasing resolution (ne) of discretization. A more significant reduction of
the computational time and cost may be obtained by taking advantage of the
simple geometry of the plate domain and the properties of the regular mesh of
elements. The second important conclusion is that the value of the double sur-
face integral over two surfaces of the boundary elements in Equation (3.25) in
the considered case depends only on the absolute distance between the elements.

Basing on the above observations and conclusions the following algorithm for
computation of the elements of matrix B given with equation (3.25) is proposed:

1. A single mesh element s, 1 ≤ s ≤ ne, in the corner of the rectangular
domain is chosen. The values of the following expression are computed
for all mesh elements e, e ∈ {1, 2, . . . , ne} and for all possible pairs of the

element shape functions
(

N s
i , N

e
j

)

, i ∈ {1, . . . , 4} , j ∈ {1, . . . , 4}:

∫

Ωs

∫

Ωe

G (r, ra)
[

k2N s
i (r)N

e
j (ra)−

− (∇N s
i (r)× n) ·

(

∇N e
j (ra)× n

)]

dΩs (r) dΩe (ra) .

(3.47)

The results are stored in memory. In the case when s = e the described
above four-point special integration scheme (3.33) is used to deal with
singularities.

2. For every pair of the mesh interpolation nodes with indices (i, j) , i ∈
{1, . . . , nn} , j ∈ {1, . . . , i} the numbers of the boundary elements to
which the nodes belong, distance between the elements, and the corre-
sponding numbers of the element shape functions are determined. The
adequate values of the expression (3.47) computed in the previous step
of the algorithm are loaded from the memory and added to the values of
the corresponding elements Bij .

3. Using the symmetry property of the matrix B the values from the up-
per diagonal part are copied to the corresponding elements in the lower
diagonal part.
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The first step of the algorithm requires n2
ennn times computation of the

double surface integral given by the expression (3.47). The two following steps
are computationally cheap and do not affect significantly the total duration
of the process. If only the symmetry property of the matrix B was used the

complexity of the algorithm would be O
(

n2
enn

2
n

)

. Taking into account the fact
that in practical applications nen ≪ nn and the total number of interpolation
nodes is usually of the order 102 or greater the savings of computational time
and cost associated with the use of the presented algorithm are significant.

The developed algorithm has been implemented using the Matlab environ-
ment and tested on a standard PC with a 4-core processor. The total compu-
tational time of determining the value of acoustic pressure in a single point of
space was less than one minute for a mesh consisting of one thousand elements.

3.5 Experimental investigations, results, and discussion

The experimental investigations regarding the free-field acoustic radiation
characteristics have been carried out in an anechoic chamber using a 20 cm
wide, 30 cm high, and 1 mm thick rectangular plate made of aluminum. The
plate was clamped in the central part of one of its shorter edges while all other
edges were free, as presented in Figure 3.7.

The plate was excited to vibrate by a pair of piezoelectric transducers,
mounted symmetrically on both sides of the structure and driven with reversely
polarized harmonic voltage signal from an amplifier connected to a generator.
Low-order vibrational modes with corresponding eigenfrequencies up to 400 Hz
were examined. The plate revealed sharp resonant characteristics and acoustic
radiation for off-resonant frequencies turned out to be very low.

The amplitude of the acoustic pressure in selected points of the ambient
space was measured using a half-inch condenser microphone by Brüel&Kjær
(type 4193 with preamplifiers type 2664) connected to the Nexus 2690 condi-
tioning amplifier, from the same manufacturer. The output of the amplifier was
connected to an oscilloscope (Tektronix TDS 2004C).

The amplitude of the acoustic pressure was measured along the axis perpen-
dicular to the surface of the plate and passing through its center and in several
planes parallel to the plate’s surface for different excitation frequencies equal to
several selected eigenfrequencies of vibrations. The results of the measurements
are presented in Figures 3.8–3.14. Figures 3.8–3.11 present the computed and
measured sound pressure level values in the z -axis as functions of the distance
from the center point of the plate. The measurements were taken at distances
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Figure 3.7. Aluminium plate structure used in the experimental investigations in an anechoic
chamber.

varying from 1 cm to 1 m. However, in the case of the fifth structural mode
(Figure 3.8) the maximum range was shortened to 20 cm due to the low level of
the observed amplitude of acoustic pressure. Figures 3.12–3.14 present the com-
puted and measured sound pressure level values in the plane z=2 cm. The color
graphs illustrate the results of the numerical simulations, while the blue circles
show values measured experimentally in the corresponding points of space.

One should notice that to compute the correct, absolute values of the acous-
tic pressure the normal velocity values introduced as the boundary conditions
in the IVBEM model (see Equation (3.9)) should correspond to the true normal
velocity amplitudes of the vibrations excited during the experiments. However,
by solving the eigenproblem for an undamped system the velocity field is deter-
mined with an accuracy of a scalar scaling factor. For that reason the results
from the Finite Element Method model of plate vibrations have been scaled to
the maximum amplitudes of velocities measured using the laser vibrometer for
each vibrational mode, with specified excitation conditions.

The comparison of the measured and computed results reveals a fair agree-
ment between the experiments and numerical predictions. The computed dis-
tribution of the sound pressure level in the ambient space and the values of the
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Figure 3.8. Sound pressure level as a function of the distance in the z -axis from the cen-
ter of the investigated plate structure vibrating in the 5

th mode: (a) numerical simulation,
(b) measurements.

amplitude of the acoustic pressure have been largely proved correct. However,
some significant discrepancies between the simulations and measurements may
be also observed (especially see Figures 3.9 and 3.10). The errors result from
imperfections in the both laboratory stand (worse low-frequency performance
of the anechoic chamber, propagation of vibrations through fastening elements,
sound reflections from the measurement equipment) and the developed mechani-
cal and acoustic numerical models (assumption of ideal boundary conditions and
material properties, disregarding the influence of the piezoelectric transducers
and electrical connections attached to the surface of the plate). The accuracy of
the simulations can be probably further increased by improving the described
issues.

The agreement between the values obtained numerically and experimentally
in general improves with the distance from the plate. This effect is caused by the
fact that the complex character of the sound field distribution in the near-field
zone promotes the intensification of errors caused by the mentioned imperfec-
tions. The results of the measurements carried out in a XY -plane, 2 cm from
the surface of the plate (Figures 3.12–3.14) generally agree well with the compu-
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Figure 3.9. Sound pressure level as a function of the distance in the z -axis from the cen-
ter of the investigated plate structure vibrating in the 6

th mode: (a) numerical simulation,
(b) measurements.

tations. Significant discrepancies reaching up to few dB are observed in several
isolated points (especially close to the edges), but the character of the distri-
bution of the sound pressure level in the immediate vicinity of the structure is
in all cases reflected correctly. The numerical predictions become most reliable
at distances greater than about 10–20 cm from the surface of the considered
structure. Beyond this range about 6 dB drop in the sound pressure level with
doubling the distance is observed (see Figures 3.9–3.14). This corresponds to
the free-field spherical wave propagation.

3.6 Conclusions

Various issues regarding the structure-borne sound generation have been dis-
cussed in the present chapter. The mechanism underlying the acoustic radiation
from vibrating plates is the coupling between the structure and the surrounding
acoustic medium. Detailed formal description and modeling of the occurring
phenomena is complex, due to the bidirectional interaction between solid and
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Figure 3.10. Sound pressure level as a function of the distance in the z -axis from the cen-
ter of the investigated plate structure vibrating in the 9

th mode: (a) numerical simulation,
(b) measurements.

acoustic domains. However, as it has been shown in Section 3.2 in the case of
relatively small structures (as compared to the radiated acoustic wavelength)
submerged in light fluids (such as, for example, air) the influence of the inertial
loading introduced by the medium is small and can be neglected. This conclusion
allows for a significant simplification of the considered problem, by carrying out
an independent analysis for the vibration and acoustic radiation characteristics.

Two important cases of structure-born sound generation have been discussed
and analyzed, namely, free-field acoustic radiation of baffled and unbaffled vi-
brating plate structures. As it has been shown in Section 3.3, in the first case the
distribution of acoustic pressure in the far-field can be modeled using relatively
simple analytical formulas, given with Equations (3.5) – (3.6). In contrast, in
the latter case no analytical solutions are known and the problem has to be
solved numerically. The relevant procedure has been described in Section 3.4.1.
Among a variety of numerical methods capable of handling the considered prob-
lem the Indirect Variational Boundary Element Method has been chosen as the
most appropriate one. A novel, dedicated algorithm of implementation of this
method has been proposed in section 3.4.2. The algorithm allows for a signifi-
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Figure 3.11. Sound pressure level as a function of the distance in the z -axis from the cen-
ter of the investigated plate structure vibrating in the 13

th mode: (a) numerical simulation,
(b) measurements.

cant reduction of computational time and cost, as compared to straightforward
implementation of the relevant formulas by taking the advantage of a simple
geometry of the considered problem and the symmetries between the elements
of matrices.

The results of the numerical simulations on the free-field acoustic radiation
characteristics of a thin, rectangle-shaped vibrating plate have been validated
experimentally. The empirical investigations were carried out in an anechoic
chamber and regarded different forms of vibrations excited at the correspond-
ing eigenfrequencies of the examined structure. The amplitude of the acoustic
pressure was measured at different points of the ambient space using micro-
phone and the proper conditioning and amplifying electronics. The results of
the measurements in general agreed with the numerical predictions, however,
some significant discrepancies have also been observed at points close to the
surface of the plate. The reason for that is the fact that the complex character
of the acoustic pressure distribution in the near-field region promotes the influ-
ence of the imperfections in both the laboratory stand and numerical models.
Nevertheless, taking into account the overall fair agreement between the results
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Figure 3.12. The distribution of sound pressure levels [dB] in the plane z = 2 cm for vibrational
mode no. 5 with frequency f = 120 Hz. The color graph illustrates the results of the numerical
simulations, while the blue circles show the values measured experimentally in corresponding
points of space.

and a high performance of the developed algorithm, it may be regarded as a use-
ful and effective tool in analysis of the free-field acoustic radiation characteristics
of vibrating plate structures with arbitrary boundary conditions.

The results and conclusions presented in this chapter are crucial from the
point of view of the whole study, as they allow to associate the vibrational
characteristics of the structure with the parameters of the generated acoustic
pressure field in the ambient space.
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Figure 3.13. The distribution of sound pressure levels [dB] in the plane z = 2 cm for vibrational
mode no. 9 with frequency f = 269 Hz. The color graph illustrates the results of the numerical
simulations, while the blue circles show the values measured experimentally in corresponding
points of space.
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Figure 3.14. The distribution of sound pressure levels [dB] in the plane z = 2 cm for vibrational
mode no. 11 with frequency f = 320 Hz. The color graph illustrates the results of the numerical
simulations, while the blue circles show the values measured experimentally in corresponding
points of space.



4

Piezoelectric sensors and actuators

4.1 State of the art, assumptions, and general description

Sensors and actuators are the necessary elements of all closed-loop control
systems. In the applications considered in the present study, concerning active
vibroacoustic control systems, sensors allow to determine a current state of vi-
brating structures (or some parameters of the generated acoustic field), whereas
actuators are used to apply the control loads. Among a variety of available
techniques of implementation, one of the most commonly used are piezoelec-
tric transducers attached to the surface of structures under control. Such a
solution preserves compactness of the controlled system while providing good
electro-mechanical properties. The electric signals from sensors are processed by
a control unit and, based on the results, the optimal parameters of the excitation
signals driving actuators are determined. However, assuming that the parame-
ters of the external excitation – which is the primary source of the vibrations
– are unknown, the information obtained from the sensors is never complete,
that is: as the number of sensors and their areas are limited to some reason-
able (finite) values, the gathered data would not allow to possess a complete
knowledge about the parameters of the vibrations of the considered structure in
any possible case. On the other hand, for the very similar reasons, the control
system is not able to excite any arbitrarily chosen form of vibrations using the
finite number of actuators.

The present chapter focuses on issues regarding the utilization of small
rectangle-shaped piezoelectric transducers as both sensors and actuators in ac-
tive vibration and vibroacoustic control systems of beam, plate and panelled
structures. A new form of a theoretical description, suitable for further deriva-
tion of the control equations, is proposed. The modal sensitivity functions of
sensors and the modal selectivity functions of actuators are introduced to de-
scribe their ability for sensing and exciting specific structural modes of the
structures. The presented approach – in contrast to most studies described in
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literature – is elaborated and tested for plates with arbitrary (non-homogeneous)
boundary conditions; moreover, due to a high level of generality of the proposed
form of description it should work for structures of more complex geometries
than rectangular plates. The introduced functions are used to model and analyze
performance and stability of the active vibroacoustic control system presented
in Chapter 5. A relevant theoretical background for sensors and actuators is
presented in Sections 4.2 and 4.3, respectively.

Many of the studies devoted to the field of active vibration and vibroacoustic
control focus on specific types of structures, which may be accurately described
using analytic formulas – like, for example, beams or simply supported plates.
Solutions obtained for such cases allowed to design piezoelectric sensors and
actuators sensitive only to specific sets of structural modes [11] or even to a
single structural mode [78, 79] by changing the shapes, sizes and/or locations
of the transducers. However, the results of these investigations cannot be easily
generalized into a more general case of plates with arbitrary boundary conditions
of support.

Taking into account the parameters of a closed-loop feedback control system
it is desirable to use collocated piezoelectric sensor-actuator pairs. Two different
solutions which ensure this feature can be found in literature. The first one –
which is simpler and more practical, yet not always feasible due to the possible
lack of access to both sides of a structure – is to attach the transducers sym-
metrically to the both surfaces of a thin beam or plate [11, 80]. The second
solution involves the use of a single piezoelectric element as sensor and actuator
simultaneously [46, 81–84]. The advantages of such a solution with respect to
the functionality of the control system are significant, but the necessary com-
plications of the corresponding electronic circuits together with a requirement
to meet very stringent parameters make it impractical.

The shapes of the piezoelectric transducers and their locations on the surface
of the structure determine the sets of the vibrational mode components avail-
able by changing the gains of the feedback loops in a specified, limited range
of values. Optimization algorithms for the placement of sensors and actuators
may be based on various cost functions depending on the type of structure,
its purpose, and also some restrictions related with the usage of various types
of transducers. The state of the art in this field is well documented in cor-
responding review papers (see, for example, [85–87]). Again, the majority of
relevant scientific investigations is focused on thin beams [88, 89] and plates
with specific boundary conditions (simply supported [90, 91], clamped [92, 93],
cantilevered [92, 94]). Other approaches also usually impose some restrictions
on the structure mounting parameters, like, for example, plates with arbitrary
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but homogeneous boundary conditions along the edges [95]. The optimization
problem is usually solved numerically with different iterative algorithms. Due
to the fact that the piezo-transducers are permanently bound to the surfaces of
the controlled structures and their locations have to be chosen at the stage of
the control system design, it is necessary to analyze in advance their parameters
and probable control strategies.

Results of analytical solutions and numerical simulations concerning modal
parameters of piezoelectric sensors and actuators are compared to the results
of experimental investigations and presented in Section 4.6. It is assumed that
the structures and the piezoelectric transducers attached to their surfaces are
rectangle in shape and that their edges are parallel to the axes of the global co-
ordinate system. The typical geometry of the problem is depicted in Figure 2.1.
Vibrational motion of the structures is assumed to occur only in the z direction,
thus, only one, corresponding component of the displacement field is considered,
namely, the deflection w = w(x, y, t). In the case of the so-called beam struc-
tures it is assumed that the length a of a structure is much greater than its
width b and its thickness hs. The flexural waves propagate along the x direction
only and the deflection w is constant along the y direction, that is: ∂w

∂y
= 0.

The vibrations of the beams are modeled using the classical Euler-Bernoulli
beam theory. Similarly, the considered plate and panelled structures are thin
in the sense of the classical Kirchhoff’s plate theory. They are considered to be
made of homogeneous, isotropic material (thus, in the case of composites, such
an approach can be applied provided that the relevant effective material con-
stants are known). The equations of motions for the considered structure models
are presented in Chapter 2. The results of theoretical predictions are compared
with the results of experiments carried out on various beam, plate and panelled
structures made up of aluminium or composite materials including the actual
materials used in aviation. The drawn conclusions are of great importance in
developing active vibroacoustic control systems.

4.2 Piezoelectric sensors

The behavior of piezoelectric transducers is governed by the constitutive
equations which include coupling between mechanical and electrical phenomena.
Assuming that the summation convention is used (i.e., the summation is carried
out over the repeating indices i, j, k, l = 1, 2, 3) these equations can be presented
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as follows, for example, in the so-called stress-charge form:

Tij = cijklSkl − ekijEk, (4.1)

Dk = ekijSij + ǫkiEi, (4.2)

where Tij

[

N
m2

]

is the second-order stress tensor, Sij

[

m
m

]

is the second-order

strain tensor, cijkl
[

N
m2

]

is the fourth-order elasticity tensor, ekij
[

C
m2

]

is the
third-order tensor of piezoelectric coefficients (for the so-called stress-charge
form), Dk

[

C
m2

]

is the electric displacement vector, Ek

[

V
m

]

is the electric field

vector, and ǫki
[

F
m

]

is the second-order tensor of dielectric constants.
It is assumed that a sensor electrode covers the whole relevant surface S

of the transducer and that the polarization of the material is constant. The
electric charge which appears on the electrodes of a piezoelectric sensor fixed to
the surface of a vibrating thin plate or beam structure is computed as follows:

Q = −
∫∫

S

D3dS. (4.3)

The piezoelectric transducers are made up of transversely-isotropic piezoceram-
ics, which involves that: e311 = e322 which now will be denoted by e3, whereas
e312 = e321 = 0. In the absence of external electric field, and having also noticed
that S33 ≈ 0, the relevant component of the dielectric displacement vector (4.2)
can be expressed as follows:

D3 = e3ijSij = e311S11 + e322S22 + e333S33 ≃ e3(S11 + S22). (4.4)

It is assumed that (because of a very good bonding) the in-plane deformation
of piezoelectric element is consistent with the deformation of the underlying
structure, thus, the relevant components depend on the corresponding curva-
tures and the distance between the mid-planes of the piezo-element and the
structure, namely:

S11 =
hp + hs

2

∂2w

∂x2
, S22 =

hp + hs
2

∂2w

∂y2
. (4.5)

Here, hp and hs are the thickness of the piezo-element and the structure, re-
spectively. Obviously, in the case of beam structures S22 = 0.

Substituting (4.5) into (4.4) and (4.3), the electric charge induced on the
shunted piezoelectric sensor attached to the surface of the plate structure can
be expressed as follows:

Q =
−(hp + hs)

2
e3

x2
∫

x1

y2
∫

y1

(

∂2w

∂x2
+

∂2w

∂y2

)

dxdy, (4.6)
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where x1, y1, x2, y2 are given in Figure 2.1.
We would like to obtain the sensitivity function of piezoelectric sensor to spe-

cific structural modes. To this end, we first compute the amplitude of the electric
charge induced on a transducer by substituting the time-harmonic form (2.5)
into Equation (4.6) to obtain:

Q = eiωtQ̃ = −eiωt
(hp + hs)

2
e3

N
∑

n=1

Wn





x2
∫

x1

y2
∫

y1

(

∂2Φn

∂x2
+

∂2Φn

∂y2

)

dxdy



 . (4.7)

Here, Q̃ denotes the amplitude of the harmonically varied sensor charge.
It is assumed that the piezoelectric sensors are connected to the charge-to-

voltage transducers circuits. Hence, the resulting voltage signal which is fed to
the active control system is proportional to the charge given by equation (4.7),
and so the desired sensitivity function S̃m

[

V
m

]

of a sensor to the structural
mode m can be defined as follows:

S̃m = R̃
Q̃m

Wm
= −R̃

(hp + hs)

2
e3





x2
∫

x1

y2
∫

y1

(

∂2Φm

∂x2
+

∂2Φm

∂y2

)

dxdy



 , (4.8)

where Q̃m is the electric charge amplitude induced by the mode m, and R̃
[

V
C

]

is the gain of the signal conditioning circuit attached to the piezoelectric trans-
ducer.

4.3 Piezoelectric actuators

The external loading introduced by the rectangle-shaped piezoelectric actu-
ator situated in such a way that its edges are parallel with the relevant axes
of the global coordinate system (see Figure 2.1) can be approximated by lin-
ear (i.e., per length) moments acting along these edges. The excitation function
Fa (x, y) describing the spatial distribution of the introduced pressure acting on
the structure can be then expressed as follows [11]:

Fa (x, y) = EIKfsa
[

δ′(x− x1)− δ′(x− x2)
]

[H(y − y1)−H(y − y2)]

+EIKfsa
[

δ′(y − y1)− δ′(y − y2)
]

[H(x− x1)−H(x− x2)] ,
(4.9)

where δ′(·) is the derivative of the Dirac delta function, H(·) is the Heaviside
step function, E is the Young’s modulus of the structure, Kf is the material-
geometric constant dependent on material properties of the piezo-ceramics and
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type of actuator (symmetric or antisymmetric) [11], and sa is the strain of the
actuator (the same in the x- and y-direction, because of the transversal-isotropy
in the xy-plane) caused by the applied driving voltage V which generates within
the piezo-element a uniform electric field in the z-direction, E3 = V/hp, there-
fore:

sa =
d3V

hp
, (4.10)

where d3 is the relevant piezoelectric material constant (d3 ≡ d311 = d322 from
the strain-charge form of piezoelectric constitutive relation). The effects of added
mass and stiffness introduced by the actuator as well as a longitudinal strain
of the structure (resulting from the transverse asymmetry of the actuator) are
neglected in the present considerations.

While considering the response of a structure to an external harmonic exci-
tation, it is very convenient to perform the decomposition of the loading force
into the eigenmodes of the structure. Due to the orthogonality property of the
mode shape functions Φn, the amplitude of the mode number m excited by the
external loading Fa can be expressed as (see Equation (2.21)):

Wm =

∫∫

S
Fa (x, y) ΦmdS

ρhs (ω2
m − ω2)

∫∫

S
Φ2
mdS

, (4.11)

where ρ is the density of the structure and ωm is the angular eigenfrequency of
the considered mode m. To compute the modal decomposition coefficients Am of
the excitation introduced by the actuator driven with the harmonic voltage V ,
relations (4.9) and (4.10) are used in Equation (4.11), which yields the following
result:

Am (V, ω) =
EIKfd3V

hpρshs (ω2
m − ω2)

∫∫

S
Φ2
mdS





x2
∫

x1

y2
∫

y1

(

∂2Φm

∂x2
+

∂2Φm

∂y2

)

dxdy



 .

(4.12)
We now introduce the actuator selectivity function to the structural mode m,
defined as:

Ãm = Ãm (ω) =
Am (V, ω)

V
. (4.13)

The selectivity of a piezo-actuator to the structural mode m describes the am-
plitude of mode m excited by the actuator driven with a harmonic signal of unit
voltage amplitude with the angular frequency ω (in absence of other excitation
forces). It should be pointed out that – in contrast to the modal sensitivity



4.4 Signal conditioning 77

function of a piezo-sensor, defined previously – the modal selectivity is a func-
tion of the frequency of driving signal and strongly depends on the difference
between this frequency and the eigenfrequency of mode m. The singularity in
Equation (4.12) occurring in the case when ωm = ω results obviously from the
assumptions of negligible damping and linearity of the system, which are not
valid for large amplitude vibrations. When the Equations (4.12) and (4.13) are
compared with the relation defining the sensor sensitivity function (4.8) an im-
portant remark should be made, namely: the surface integrals are the same and
depend only on the transducer’s coordinates (x1, y1) and (x2, y2). This means
that the efficiency of a piezoelectric transducer with respect to a particular struc-
tural vibration mode is similar both for the mode sensing and actuating. These
considerations of course lead in the formal way to the result consistent with the
reciprocal principle regarding the direct and inverse piezoelectric effects.

4.4 Signal conditioning

Piezoelectric sensors used for vibration monitoring convert the displacement
of their surfaces into electric charge, accordingly to the formulas (4.2)–(4.7) de-
scribing relevant underlying phenomena. Therefore, they may be classified as
self-generating sensors and, as so, theoretically, applied in passive detection sys-
tems (i.e., not requiring an external power supply to operate). However, due to a
very low current efficiency of sensor-based sources, such solutions are impracti-
cal and not suitable for the considered applications. In order to achieve a strong
and reliable output signal the transducers should be connected to dedicated
conditioning circuits with a very high input impedance.

In the present study concerning low-frequency vibrations and relatively small
amplitudes of displacement, the piezoelectric sensor is modeled as charge or volt-
age source with parallel or series capacitor Cp representing the electric capaci-
tance of the transducer resulting from its dielectric properties - see Figure 4.1.
Similar simple models are commonly used to describe the behavior of piezoelec-
tric sensors in practical applications – see, for example, [82, 96–99]. The parallel
resistance representing the current leakage has been omitted, as it is assumed
that the sensor is always connected to a balanced input amplifier and no DC
signals are considered.

Among a variety of types of electronic circuits capable of effective processing
of signals from piezoelectric sensors one of the most popular are simple devices
based on operational amplifiers, namely charge and voltage mode amplifiers
whose exemplary wiring diagrams are presented in Figure 4.2. The theory of
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Figure 4.1. Piezoelectric sensor: a) schematic symbol, b) charge model, c) voltage model.

operation of such devices has been well described in literature – see, for ex-
ample [96, 100]. The frequently encountered name „charge amplifier” can be
slightly misleading, because the circuit it concerns is rather a charge-to-voltage
converter and it does not amplify electric charge in the literal sense. However,
due to the fact that such nomenclature is commonly used in scientific and tech-
nical literature, it is also adopted in the present study.
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Figure 4.2. Typical signal conditioning circuits for piezoelectric sensors: charge mode amplifier
(left) and voltage mode amplifier (right).

The operational amplifiers used in construction of the signal conditioning
circuits for piezoelectric sensors should have as high input impedance as possible
in order to minimize the current leakage. For that reason, the good choice is to
use components with FET transistor inputs whose parameters usually meet this
criterion well. The values of the elements connected to the operational amplifiers
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(resistances, capacities) determine the gain and cutoff frequencies of the whole
device. The desired characteristics should be specified at the design stage.

Assuming that the operational amplifiers used to construct the circuits pre-
sented in Figure 4.2 may be modeled as the ideal ones (with infinitely high input
impedances, zero output impedances and infinitely high open-loop gains), the
gain of the charge amplifier (defined as the ratio of output voltage amplitude to
the amplitude of electric charge induced on a piezoelectric sensor modeled as in
Figure 4.1, picture b) is given with the following formula:

GC =
1

CC1

[

V

C

]

. (4.14)

The lower and upper cutoff frequencies of the amplifier are computed with the
following equations, respectively:

fC
L =

1

2πRC1CC1
[Hz], (4.15)

fC
H =

1

2πRC2 (CC1 + Cp)
[Hz], (4.16)

where Cp is the capacity of the piezoelectric sensor – see Figure 4.1.
Analogously, the gain of the voltage mode amplifier (defined as the ratio

of output voltage amplitude to the amplitude of electric charge induced on
a piezoelectric sensor modeled as in Figure 4.1, picture b) is given with the
following formula [96]:

GV =
1

(CC1 + CCAB)

(

1 +
RV 1

RV 2

) [

V

C

]

, (4.17)

where CCAB is the capacity of the wires connecting sensor with the amplifier.
The lower and upper cutoff frequencies of the amplifier are computed with the
following equations, respectively:

fV
L =

CC1 + CCAB

2πRC1CC1CCAB
[Hz], (4.18)

fV
H =

1

2πRV 3 (CV 1)
[Hz]. (4.19)

The gain of the charge amplifier depends only on the capacity CC1, while
the gain of voltage mode amplifier is also a function of the capacity of the
connecting wires CCAB, which also influences the lower cutoff frequency of the
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latter device. This means that the mentioned parameters of the voltage ampli-
fiers might drift in time due to changes in configuration or replacements of the
interface cables. For that reason and according to the fact that the stable gain
in the low-frequency range is crucial for the considered applications, the charge
mode amplifier has been chosen as the type of a signal conditioning circuit for
piezoelectric sensors used in the present study.

For the sake of the conducted experimental research a dedicated signal condi-
tioning circuit has been developed and constructed. The relevant wiring diagram
is presented in Figure 4.3. The circuit is based on AD745 FET input operational
amplifier from Analog Devices, which provides a high input impedance and low
biasing current together with a low noise performance. Due to the fact that
the considered measurements of plate vibrations carried out using piezoelectric
sensors require a wide gain control range as the amplitudes of vibrations vary
significantly for resonant and off-resonant frequencies, the values of the feed-
back loop capacitors and resistors can be modified using two multikey switches.
At the same time, in the same way, the lower cutoff frequency is set. The se-
ries resistor RC2 from Figure 4.2, whose function is to protect the operational
amplifier against the electrostatic discharges, has been omitted in the present
design.

One of the constructed prototypes of the signal conditioning circuits is pre-
sented in Figure 4.4. The printed circuit board was etched from one-sided copper
laminate. The maximum allowable supply voltage range, which also limits the
maximum available output signal level, is ±18V. A large number of similar de-
vices have been built and tested with various piezoelectric transducers, proving
good performance and low level of introduced noise.

The behavior of piezoelectric transducers used as actuators for exciting vi-
brations of thin plate structures has been described in Section 4.3. As it results
from Equation (4.12), they are voltage driven, i.e., the amplitudes of the induced
structural modes are proportional to the amplitude of the applied harmonic
voltage signal. From the point of view of the output amplifier, the piezoelectric
actuators are a high-impedance capacitive load. For that reason they should not
be driven with standard audio amplifiers, which are intended for an entirely dif-
ferent type of low-impedance inductive loads (namely, loudspeakers). Dedicated
electronic circuits, suitable for the considered applications, have been developed
and constructed. The corresponding specifications and wiring diagrams are pre-
sented in Chapter 5, Section 5.5 together with the description of the complete
active control system.
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Figure 4.3. Electric scheme of designed and constructed charge amplifier with adjustable gain
and cutoff frequency, based on AD745 low noise, FET input operational amplifier.

4.5 Some technical aspects on the preparation of the composite

structures for active control systems

The piezoelectric transducers used in the active vibration or vibroacoustic
control systems usually take the form of very thin and small plates (patches)
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Figure 4.4. Developed and constructed charge amplifier with adjustable gain and cutoff fre-
quency: printed circuit board assembly scheme (left) and a picture of an exemplary built
device (right)

with electrodes sputtered on their both faces. Due to the fact that one of those
faces needs to be attached to the surface of a controlled structure, the problem of
ensuring electrical connectivity arises. Most of the kinds of glues typically used
in bonding the piezo-elements are very good insulators, while the structures are
typically made up of excellent conducting materials: metals (like aluminum) or
carbon-fiber composites. A few solutions to cope with this issue are described
in literature. Some of them require drilling a hole in the structure through
which a wire is connected to the piezo-element. However, such a violation of
the controlled element is often not possible and creates additional problems in
the case of collocated sensor/actuator pairs. Another way to ensure the access
to the bottom electrode of a piezo-element is to use additional pads between
the transducer and the structure, but then the mass, thickness and mechanical
properties of the attached system change significantly. Yet another approach
suggests to use some kind of conductive glue providing both a very good bonding
and electrical contact; however, one must be very careful during manufacturing,
since the squeezed-out glue may cause a short-circuiting of the electrodes of
transducer. To avoid this situation, a combined method using two kinds of glue
can be used, as it is illustrated in Figure 4.5. This technique was successfully
applied and tested during the experiments carried out on various aluminum
beams and plates.
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Figure 4.5. Technique of attaching a piezoelectric element to a structure made of conductive
material, ensuring the electric contact between these elements and avoiding short-circuiting
the electrodes.

4.6 Numerical and experimental investigations

Modal sensitivity/selectivity functions of small, rectangle-shaped piezoelec-
tric transducers attached to the surfaces of beam, plate, and panelled structures
are investigated in this section. The solutions obtained using analytical formu-
las and numerical simulations are compared to the results of experiments. The
research described in the present section of the study concerned several different
aluminum and composite structures, including structures made of actual mate-
rials used in aviation (carbon fiber sandwich structures with nomex-honeycomb
core). Such a variety of test objects allows to draw some conclusions regarding
the scope of applicability of the proposed approach and to bring the obtained
results closer to the actual, real-life practical uses.

The numerical finite-element analyses were used to solve eigen-problems of
the investigated plate and panelled structures, however, it must be emphasized
here that in the proposed line of investigation only eigenmode shapes were of
interest since this part of the study subject is the modal sensitivity and selec-
tivity. Thus, the mass and stiffness properties of structures were not important
when caring out these analyses, and in case of composite structures very ap-
proximative values could be taken. Such approach, however, requires that the
investigated plate and beam composite structures can be considered as macro-
scopically homogeneous and macroscopically isotropic (in their planes), so that
the mode shapes should be the same whatever the stiffness and mass density are,
and they depend only on the structure geometry and conditions of support. This
entails also the fact that the effect of small piezoelectric patches fixed to their
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faces can be neglected. However, this latter assumption – important also for
aluminium structures and usually valid at lower frequencies – is rather standard
and should be also valid in the case of stiffer composites.

The assumption of in-plane isotropy may at first appear as disputable in case
of composites, however, one should notice that although the carbon-fibers for
the composite plate faces were woven in an orthogonal pattern (see Figure 4.7),
exactly the same fibers were used in both mutually perpendicular directions,
and that results in the so-called structural isotropy (in plane) of both faces. In
other words, the carbon fabric is a plain weave and thus isotropic in the plane of
the weave. The honeycomb core is also isotropic in the plane of the cell pattern
under three loading mechanisms as explained in [101], since it is formed from
cells of regular hexagons.

Nevertheless, the final confirmation of the validity of both assumptions of
macroscopic homogeneity and isotropy is confirmed by the results of the pro-
posed approach which compares and utilises in conjunction numerical and ex-
perimental investigations.

4.6.1 Beam structures

Due to the undertaken assumptions the classical Euler-Bernoulli thin beam
theory is used to describe the vibrational motion of the considered beam struc-
tures. Under such conditions the vibration mode shapes can be computed an-
alytically, as the sum of harmonic and hyperbolic functions, with coefficients
depending on the boundary conditions [52]. Based on such a formula, the modal
sensitivity function was computed for a piezoelectric sensor (of known dimen-
sions) attached to the clamped beam structure. Some results of these computa-
tions, obtained for a 3 cm long piezo-element on a 58 cm long beam (with one
end clamped and the other free) are shown in Figure 4.6. According to the con-
siderations discussed in Sections 4.2 and 4.3, piezoelectric sensors and actuators
are bounded with a reciprocal relation, which implies that the sensitivity and
ability of exciting specific structural modes depend only on the location of the
transducer on the surface of structure.

The presented results were used for positioning piezoelectric transducers on
thin beams made of aluminium and glass-fiber which were examined during fur-
ther experimental research. For homogeneous beams the modal shape functions
do not depend on the material; they are the same for every thin beam of the
same length and boundary conditions and the material properties affect only
the eigenfrequencies. In the presented case, the piezo-element location that al-
lows to sense or excite every mode is close to the clamped end of the beam.
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Figure 4.6. Normalized sensitivity functions for the rectangle-shaped piezoelectric sensor at-
tached to a cantilevered beam of length 58 cm as a function of the structural mode number
and the distance of the sensor from the clamped end of the beam.

The transducers may be positioned so that they will not respond or induce any
specific structural modes but they still will be sensitive to most of the modes in
the considered low-frequency range.

The experimental investigations were performed using 1 mm thick, 28 cm
long, and 2 cm wide aluminium beams and a single glass-fiber composite beam
58 cm long, 3 cm wide, and 2.3 mm thick. The piezo-elements were made of Pz29
piezoceramics and were 2 cm wide, 3 cm long, and 0.3 mm thick. The values
of important relevant parameters of the utilized piezoceramic material are as
follows: e3 = 21, 2 C

m2 , d3 = 5, 74 · 10−10 C
N

. The beam structures that were used
in experimental investigations are shown in Figure 4.7.

The experimental examination of the vibrations of beam structures revealed
an excellent agreement with the theoretical predictions. The vibrations were
excited by a single piezoelectric actuator positioned close to the clamped end
of beam, while the other piezo-elements, fixed at different distances along the
beam, were used as sensors. The electrodes of the sensors were connected to
a charge-to-voltage converters. It is worth to notice that for aluminium beams
– for which the material constants are known – the predicted and measured
first three eigenfrequencies of the bending modes (i.e., all eigenfrequencies of
the bending modes in the considered low-frequency range below 400 Hz) at 11,
65 and 185 Hz agreed with an accuracy better than 1 Hz. That observation jus-
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tifies the assumption to neglect the stiffness and mass influence of the attached
piezoelectric elements to the vibration characteristics of beam structures.

Figure 4.7. Three thin aluminium beams fixed to an experimental stand (left); a glass-fiber
composite beam and a sandwich panel made up from the carbon-fiber composite liners with
the Nomex -honeycomb core (right) used in the experimental investigations.

In the case of the beam made of glass-fiber composite, no material constants
were known. Two rectangle-shaped piezoelements were attached to the surface
of the structure: the first one – fixed 4 cm from the clamped end – served as
actuator simulating the external source of vibrations. The second transducer
was located 29 cm from the clamped end and it was used as a sensor. Due
to the numerical simulations, the sensor should be insensitive to the structural
modes No. 3 and 5. The resonant frequencies were found experimentally and the
mode shapes were identified using a laser vibrometer. The results are presented
in Table 4.1; the modes No. 3 and 5 were not sensed by the sensor which agrees
with the theoretical predictions.

If a thin beam (of length L and the rectangular cross-section of height hs) is
elastic, isotropic, and homogeneous – or can be approximately treated as such
– its eigenfrequencies can be calculated using the following formula [52]:

fn =
β2
nhs

2πL22
√
3
vb, (4.20)
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Frequency [Hz]
Number of nodes in the
mode shape function

Identified mode number

95.8 3 4
235.5 5 6
318.6 6 7
448.5 7 8
562.1 8 9

Table 4.1. Measured resonant frequencies and the corresponding parameters of structural mode
shapes for the glass-fiber composite beam.

where vb =
√

Eb/ρb is the velocity of the plane wave in the (supposedly elastic
and isotropic) material of the beam (Eb and ρb are the Young’s modulus of the
material and its density, respectively) and βn is the coefficient dependent on
the boundary conditions and the mode number [52]. Equation (4.20) and the
results of measurements given in Table 4.1 were used to estimate the (“effective”,
average) speed of sound for the composite material from which the examined
beam was made. The mean value found using the measured eigenfrequencies
listed in Table 4.1 was 2553 m/s. Then, this value was used in Equation (4.20)
with the coefficient β2

2 = 22, 034 [52] appropriate for the 2nd mode (not used
in the previous calculations) to estimate the eigenfrequency of this mode. The
computed result of 17.7 Hz agrees well with the resonant frequency of 18.2 Hz
measured for this mode.

The presented results clearly conclude that in the case of thin beams made
from different materials the ability of sensing or exciting specific forms of vibra-
tions with small, rectangle shaped piezoelectric transducers can be accurately
determined with simple analytical formulas. The optimal locations of sensors
and actuators should be chosen in order to maximize (or minimize) the modal
sensitivity and selectivity values for modes most significant in the considered
cases. However, as it can be seen from Figure 4.6, such transducers will always
be sensitive to most of the forms of vibrations. This conclusion is especially im-
portant when considering off-resonant vibrations with many modal components
involved.

4.6.2 Plate and panelled structures

The modal sensitivity and selectivity functions (4.8) and (4.13) of small
rectangle-shaped piezoelectric transducers attached to the surfaces of plate or
sandwich-panel structures are investigated in this section. In general, for arbi-
trary (non-homogeneous) boundary conditions of support, the rectangle plate
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mode-shape functions Φn cannot be found analytically. Therefore, the finite ele-
ment analysis was applied to determine the eigenfrequencies and the correspond-
ing eigenvectors of the investigated structures. Experimental investigations were
carried out on the sandwich composite panel made up of two carbon-fiber faces
and a Nomex -honeycomb core (see Figure 4.7) and a thin aluminium plate (see
Figure 4.9). The aluminium plate was 300 mm long, 200 mm wide, and 1 mm
thick, while the sandwich plate was 402 mm long, 272 mm wide, and 5 mm
thick. The structures were clamped by a part of their shorter edges and all the
other edges were free.

Figure 4.8. Results of the numerical simulations: the shape of an exemplary vibrational mode
of the considered plate structure made of aluminium (left) and the corresponding distribution
of the induced electric charge induced on the theoretical point-sensors made of the considered
piezoceramics (right).

Eight 0.3 mm-thick rectangle-shaped piezoelectric transducers with dimen-
sions 20 mm × 30 mm were attached to one face of the sandwich panel. Three of
them were fixed close to the clamped boundary and served as actuators which
simulated the external excitation sources. The other five acted as sensors. In the
case of the aluminium plate, five pairs of such piezotransducers were used. In
each pair, the two piezotransducers were attached symmetrically to both sides
of the plate, with polarization and wires connected in such a way so that an
asymmetric bimporh actuator/sensor was formed. From five pairs one served as
the source of the excitation force while the others were used as sensors.

The COMSOL Multiphysics software was used for the numerical simulations.
Two different models of the considered structures were developed and compared:
a simple two-dimensional thin plate model and a three-dimensional model of
plate with five pairs of asymmetrically-attached piezoelectric sensors/actuators.
In the second case the transducers were assumed to be made of transversally



4.6 Numerical and experimental investigations 89

Figure 4.9. Thin aluminium plate with attached piezoelectric transducers in the laboratory
stands used in the experimental investigations.

isotropic piezoceramics, for which the material parameters were taken from the
manufacturer’s data catalog. The main reason for using two different models
was to investigate the influence of the added mass and stiffness introduced by
the transducers on the vibrational characteristics of the considered structures.
The comparision between the obtained results indicates that – in the consid-
ered low-frequency range – including the comparatively small transducers in the
simulations had no significant effect either on the shape functions of the eigen-
modes, or on the eigenfrequencies. The experimental investigations revealed that
the mode shapes – determined using the laser vibrometer – were exactly as pre-
dicted, but the measured eigenfrequencies were not that consistent with the
simulations. The results are presented in Table 4.2.

The modal sensitivity functions of the piezoelectric sensors attached to the
considered structures were investigated numerically and experimentally. The
normalized absolute values of the obtained results for the first several vibration
modes are given in Tables 4.3 and 4.4 for the sandwich plate, and in Tables 4.5
and 4.6 for the aluminium plate. The value 1 in a cell of the Table indicates
that the specific transducer is the most sensitive to the specific mode of all the
piezo-elements (thus, the sensitivities are relative with respect to the result of
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Eigenrequency [Hz] Mode shape

2D plate model 3D model Measured

8 8.1 7.1

24.6 25 27.1

50.3 50.5 51.7

82.8 83.1 90.1

127.2 129.2 123.5

144.9 143.4 155.1

160.2 163.5 172.4

199 199 183

Table 4.2. Resonant frequencies determined numerically (using a 2D plate model and the 3D
structure model with piezoelements) and experimentally, and the corresponding mode shapes.

the “best” sensor), while the value 0 indicates that it is not sensitive to this
mode at all.

The locations of the piezo-elements were chosen based on the results of the
numerical simulations described in the previous section. The exemplary results
are presented in Figure 4.8. To determine the modal sensitivity or selectivity
values the computed charge should be integrated over the desired surface corre-
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Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

1 1 0.678 0.468 0.28 0.055
2 0.008 0.329 0.01 1 0
3 0.317 0.846 1 0.969 0.28
4 0.001 1 0.09 0.29 0
5 0.6 0.105 1 0.72 0.68

Table 4.3. Values of the normalized sensitivity function of piezoelectric sensors attached to
the sandwich panel obtained from the numerical simulations.

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

1 1 0.5 0.634 0.2 0.062
2 0.089 0.523 0.178 1 0.103
3 0.662 0.625 1 0.6 0.185
4 0.465 0.922 1 0.52 0.367
5 0.052 0.091 0.973 1 0.445

Table 4.4. Values of the normalized sensitivity function of piezoelectric sensors attached to
the sandwich panel obtained from the experimental investigations.

Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4

1 1 0.34 0.9 0.03
2 0.29 0.6 0.07 1
3 0.24 1 0.68 0.22
4 1 0.3 0.02 0.88
5 0.25 1 0.22 0.37
6 0.56 0.65 1 0.34
7 0.52 1 0.02 0.09
8 0.56 0.34 1 0.16

Table 4.5. Values of the normalized sensitivity function of piezoelectric sensors attached to
the aluminium plate obtained from the numerical simulations.

sponding to a chosen transducer location. The purpose was to ensure a negligible
or high sensitivity to the selected structural modes. Once again, it can be seen
that a relatively small, rectangle-shaped piezo-element can be placed in loca-
tions that ensure a very high or, in other case, negligible sensitivity to one or
two selected structural modes, but that the transducer will also respond to most
of the other modes in the considered low-frequency range.

The comparison of the results given in Tables 4.3-4.6 reveals that the experi-
mental and numerical results are in general similar, though some significant dis-
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Mode number Sensor 1 Sensor 2 Sensor 3 Sensor 4

1 1 0.42 0.91 0.08
2 0.17 0.99 0.55 1
3 0.4 1 0.68 0.33
4 1 0.19 0.05 0.75
5 0.1 1 0.4 0.27
6 0.69 0.14 1 0.42
7 0.34 1 0.1 0.05
8 0.56 0.34 1 0.2

Table 4.6. Values of the normalized sensitivity function of piezoelectric sensors attached to
the aluminium plate obtained from the experimental investigations.

crepancies between the predicted and measured values are observed too. For ex-
ample, in the case of the sandwich structure sensors 3 and 5 were in fact sources
of the electric signal at the all considered resonant frequencies, although their
locations were deliberately chosen in such a way that the transducers should be
– theoretically – insensitive or almost insensitive to some selected modes. As a
matter of fact, none of the sensitivity values in Table 4.4 is close to zero.

The results are in general more consistent between the numerical predictions
and experiments for the aluminium plate. For some vibrational modes of this
structure – see, for example the mode No. 8 in Tables 4.5 and 4.6 – the results
are in fact almost exact. The main reason for this better agreement is obviously
the exactness in modelling the material for the isotropic aluminium plate, and
also a seemingly lower structural damping than in the case of the sandwich
plate; a better adhesion of the transducers to the surfaces of the aluminium
plate might also have its effect. The methods of mounting the piezoelements to
the considered structures were different due to a need to ensure the electrical
contact to the both electrodes of a transducer – including the ‘bottom’ electrode
that is the one in contact with the plate. In the case of electrically conductive
aluminium the plate was used as a common ground so that the whole bottom
side of a transducer could be thoroughly and fully glued to the plate with a
conductive glue; in the case when the piezoelements were attached to the sand-
wich plate additional electric wires had to be glued to the ‘bottom’ electrodes
making the attachment not sufficiently complete.
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4.7 Excitation of resonant vibrations

Vibrations of plates excited by a harmonic force at a frequency equal to one
of the eigenfrequencies of the structure are particularly important in the scope
of the present study. It has been observed that the investigated structures have
very sharp resonant characteristics, which is connected with a low structural
damping, and due to that the significant emission of sound occurs only for the
mentioned types of harmonic excitation. In the assumed model of vibrations, de-
scribed in Chapter 2, the amplitudes of specific modes are inversely proportional
to the differences between squared excitation frequency and squared correspond-
ing eigenfrequency. If those two frequencies are equal, the value of the expression
cannot be determined – it theoretically reaches infinity. Such a conclusion ar-
gues obviously with the observations, as the amplitudes of vibrations of real
structures are always limited. The limitations result from damping and nonlin-
ear effects, which have not been taken into account in the used simple form of
the formal description of the considered problem. For that reason, the ampli-
tudes of resonant vibrations of the investigated structures are in the present
study determined experimentally, using a laser vibrometer. It is assumed, that
due to the observed sharp resonant characteristics all of the structural modes
with corresponding eigenfrequencies not equal to the given excitation frequency
can be neglected in such case. This assumption has been actually validated
by determining the shape functions of the excited forms of resonant vibrations
which agreed well with the shapes of the corresponding eigenmodes determined
numerically.

However, an important question arises: are the amplitudes of resonant vibra-
tions excited by a piezoelectric actuator in the considered cases limited primarily
by the internal damping or by occurring nonlinear effects? In other words, are
those amplitudes linearly proportional to the amplitude of the harmonic voltage
signal applied to the transducer? This issue is of a fundamental importance for
the carried out experimental research, as it decides whether the results obtained
for various levels of the driving signals can be easily scaled and compared to each
other. To answer this question, the following investigation has been performed
using thin aluminium plate described in section 4.6. For each of the eigenmodes
shape functions presented in Table 4.2 the coordinates of points of maximum
vibration amplitudes have been determined using a Matlab script. Then, the
plate was excited to vibrate at corresponding eigenfrequencies by one pair of
piezoelectric transducers attached symmetrically on both sides of the structure.
The amplitudes of induced vibrations were measured with a laser vibrometer
at specified points for each structural mode as functions of the amplitudes of
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voltage signals driving actuators. The exemplary results are presented in Ta-
bles 4.7–4.10.

Excitation voltage
amplitude [V]

Measured velocity
amplitude [m/s]

Displacement
amplitude [m]

5 0,002 2, 58× 10−6

10 0,00405 5, 22× 10−6

15 0,006 7, 73× 10−6

20 0,008 1, 03× 10−5

Table 4.7. Maximum amplitudes of vibrations of thin aluminium plate structure excited to
vibrate at its eigenfrequency corresponding to the structural mode no. 5.

Excitation voltage
amplitude [V]

Measured velocity
amplitude [m/s]

Displacement
amplitude [m]

5 0,0106 1, 1× 10−5

10 0,0215 2, 23× 10−5

15 0,0318 3, 29× 10−5

20 0,042 4, 36× 10−5

Table 4.8. Maximum amplitudes of vibrations of thin aluminium plate structure excited to
vibrate at its eigenfrequency corresponding to the structural mode no. 6.

Excitation voltage
amplitude [V]

Measured velocity
amplitude [m/s]

Displacement
amplitude [m]

5 0,0101 9, 4× 10−6

10 0,0203 1, 88× 10−5

15 0,0303 2, 82× 10−5

20 0,04 3, 72× 10−5

Table 4.9. Maximum amplitudes of vibrations of thin aluminium plate structure excited to
vibrate at its eigenfrequency corresponding to the structural mode no. 7.

The presented results concern four subsequent forms of vibrations with cor-
responding eigenfrequencies ranging from 123 Hz to 183 Hz. For the excitation
amplitudes up to 20 V the maximum vibration amplitudes are of the order of
10−6 − 10−5 m. To investigate the linearity of relation between the applied volt-
age levels and induced modal amplitudes the ratios of the considered parameters
related to the lowest values have been computed. The results are presented in
Table 4.11.

The presented results indicate that the investigated relation is almost ideally
linear. Therefore, the nonlinear effects are not the primarily factor limiting the
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Excitation voltage
amplitude [V]

Measured velocity
amplitude [m/s]

Displacement
amplitude [m]

5 0,0068 5, 89× 10−6

10 0,0136 1, 18× 10−5

15 0,0208 1, 8× 10−5

20 0,0275 2, 38× 10−5

Table 4.10. Maximum amplitudes of vibrations of thin aluminium plate structure excited to
vibrate at its eigenfrequency corresponding to the structural mode no. 8.

Excitation
voltages
ratio

Velocities
ratio –
mode no. 5

Velocities
ratio –
mode no. 6

Velocities
ratio –
mode no. 7

Velocities
ratio –
mode no. 8

1 1 1 1 1
2 2,025 2,028 2,005 2,004
3 3 2,995 2,995 3,051
4 4 3,962 3,96 4,044

Table 4.11. Ratios of the maximum vibration amplitudes for four different structural modes
excited at their corresponding eigenfrequencies as functions of ratios of amplitudes of the
exciting voltages.

amplitudes of resonant vibrations. The maximum observed deviations are less
than 2% in all cases, which may be assumed as considerably low. This allows
to conclude that scaling and comparing the results of measurements carried out
with different levels of excitation voltages should not be misleading.

4.8 Conclusions

Various issues regarding the utilization of small, rectangle-shaped piezoelec-
tric transducers as sensors and actuators for sensing and exciting vibrations of
beam, plate and panelled structures have been discussed in the present chap-
ter. A new form of a theoretical description introducing modal sensitivity and
selectivity functions, suitable for structures with arbitrary boundary conditions
has been proposed. The elaborated approach allows for a simple evaluation of
usefulness of given sensors and actuators in controlling specified forms of vibra-
tions and simplifies the determination of optimal placement of the transducers
on the surfaces of the controlled structures.

The modal parameters of piezoelectric sensors and actuators were deter-
mined numerically and experimentally using various beam, plate, and pan-
elled structures, including sandwich composite made of carbon-fiber liners with
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nomex-honeycomb core – an actual material used in aviation applications. The
agreement of the comparison between the results of simulations and the results
of measurements was almost perfect in the case of beams, slightly worse for the
thin aluminium plate, and the worst (but still generally fair) for the sandwich
structure. The differences in the accuracy of predictions occur probably due to
the varying degree of simplifications in relevant models and imperfections in
construction of the investigated structures.

An independent part of considerations has been devoted to the problem of
resonant vibrations. The assumed models of thin beam and plate vibrations,
used to describe the behavior of the investigated structures, do not take into
account damping and so are unable to determine the modal amplitudes for cases
in which the external harmonic excitation force has frequency equal to one of the
eigenfrequencies of the structure. The carried out experiments clearly indicated
that the amplitudes of the resonant vibrations are linearly proportional to the
amplitudes of the voltage signals driving actuator. Thus, scaling and comparing
results obtained for different levels of excitation should not be misleading.

Various technical aspects regarding practical implementation of the piezo-
electric sensors and actuators have been described. A developed technique of
attaching transducers to conductive surfaces that ensures electrical contact with
both electrodes and prevents short-circuiting between them has been presented.
Such a method was successfully applied to construct the composite structures
used in the present study. For the sake of practical implementations the elec-
tric signal from piezoelectric sensors needs to be amplified with an adequate
conditioning circuit. The parameters of the most commonly used types of such
circuits have been discussed. The charge amplifier was pointed out as most suit-
able for the considered applications. The description of an exemplary developed
device of such type has been presented together with relevant wiring diagrams.
The constructed amplifiers proved very good effectiveness and demonstrated a
low noise performance in numerous experiments.

Piezoelectric sensors and actuators are basic and necessary components of
the developed active vibroacoustic control system which is the main topic of the
present study. The presented conclusions regarding various aspects of their uti-
lization in the considered applications form the basis for investigations described
in the next chapter.
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Active vibroacoustic control system

5.1 Aim and methods

General assumptions regarding the considered problem are presented in Sec-
tion 1.1. The aim of the present study is to develop, construct, and evaluate an
active control system capable of reducing the amplitude of the acoustic pressure
|p|, generated by a vibrating plate structure in any given point of the ambient
space, indicated by a vector R. It is assumed that the considered system uses
piezoelectric transducers attached to the surface of the plate as both sensors
and actuators. The system has decentralized feedback architecture, i.e., all of
the sensor-actuator pairs are connected independently with feedback amplifiers.
The number of such pairs included in the system is denoted as M . The gain
Gm of the feedback loop number m, where 1 ≤ m ≤ M , can be adjusted in the
range from 0 to Gmax

m , where Gmax
m denotes the maximum available gain value

for feedback loop number m. For the sake of brevity it is convenient to write
the control parameters as a vector, in the following form:

G =











G1

G2
...

GM











, (5.1)

where each of the elements of the vector satisfies the following condition:

∀m={1,2,...,M} 0 ≤ Gm ≤ Gmax
m . (5.2)

By changing the feedback gains, the characteristics of the secondary exci-
tation sources, namely, the actuators, are altered and, consequently, so are the
modal components of vibrations of the plate. Due to the assumption of the lin-
earity of the considered phenomena, neglection of the structural damping and
due to the fact that only steady state, low frequency harmonic vibrations are
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considered, the acoustic pressure in a given point of space R, for a given angu-
lar frequency of the excited vibrations ω can be expressed as a function of the
modal amplitudes:

p (R, ω) = p (W1, . . . ,WN )|(R,ω) , (5.3)

where N is the number of considered structural modes of vibrations. The form of
the function p (W1, . . . ,WN ), linking the acoustic pressure with the amplitudes
of the modal components of vibrations of the plate, depends on the assumed
boundary conditions. In a general case such a problem has no analytical solution
and the acoustic pressure distribution has to be computed numerically. The
relevant issues have been described in detail in Chapter 3 of this study.

The acoustic pressure p is a complex value and for the considered, steady-
state problem it can be unambiguously defined by its real and imaginary compo-
nents, which are in this case also functions of the modal amplitudes of vibrations.
Thus, the amplitude of the acoustic pressure can be expressed as:

|p| =
√

p2re (W1, . . . ,WN ) + p2im (W1, . . . ,WN ), (5.4)

where pre (W1, . . . ,WN ) and pim (W1, . . . ,WN ) denote the real and imaginary
part, respectively.

In order to determine the optimal control strategy, the aim of the control
has to be defined in terms of a relevant cost function whose value should be
minimized. The optimization process is restricted by limited values of gains of
feedback amplifiers. In practice such restrictions result from parameters of the
electronic components included in the control system and parameters of the
power supplies. However, due to the fact that the gain adjustments within the
available ranges do not significantly influence the system hardware characteris-
tics and that the issues related to power consumption have no practical meaning
from the point of view of the addressed problem, introduction of a control cost
term penalizing amplifications was considered redundant. Given the above con-
clusions and taking into account the fact that the value of amplitude of the
acoustic pressure (5.4) is always non-negative, for the computational purposes
the assumed form of the cost function is the squared acoustic pressure ampli-
tude. Thus, according to (5.4), for a specified point of the surrounding space
and a given excitation force, the cost function can be expressed as:

fc (W1, . . . ,WN ) = p2re (W1, . . . ,WN ) + p2im (W1, . . . ,WN ) . (5.5)
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The real and imaginary components can be written in the following forms:

pre (W1, . . . ,WN ) =
N
∑

n=1

P re
n Wn (5.6)

and

pim (W1, . . . ,WN ) =

N
∑

n=1

P im
n Wn, (5.7)

where P re
n and P im

n are modal radiation coefficients, linking the values of the
real and imaginary components of the acoustic pressure in a given point of
space with the modal amplitudes of vibrations of the plate. The values of those
coefficients have to be in general determined numerically, using, for instance,
the methods described in Chapter 3 of the present study. The cost function can
be thus written in the following form:

fc (W1, . . . ,WN ) =

[

N
∑

n=1

P re
n Wn

]2

+

[

N
∑

n=1

P im
n Wn

]2

, (5.8)

The goal of the optimization process is to find a gain vector G satisfying
the condition (5.2), for which the vibrational pattern of the plate will be altered
in such a way that for the given point of space, given excitation parameters
and specified boundary conditions, the value (5.8) will be as low as possible.
The introduced cost function is actually a sum of two quadratic functions, one
related to real and the other to imaginary part of the acoustic pressure. The
following notations are introduced:

fre =

[

N
∑

n=1

P re
n Wn

]2

, (5.9)

fim =

[

N
∑

n=1

P im
n Wn

]2

. (5.10)

From the computational point of view, in the control optimization process
it is convenient to consider both of those components separately. As it will
be shown in the following sections of the present chapter, in such cases it is
possible to introduce very fast and efficient algorithms for determining optimal
feedback control gains, which will ensure achieving the lowest possible values
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of the components given with Equations (5.9) and (5.10). However, what is
obvious, such a procedure cannot ensure that the global minimum of the cost
function (5.8) will be achieved, as the optimal gain values and the resulting
optimal vibrational patterns determined for both squared real and imaginary
parts of the acoustic pressure independently do not have to coincide for the
same sets of control parameters.

Let the fmin
c denote the sought, global minimum of the cost function (5.8),

achievable for a vector of permitted, optimal gain values Gopt
c (the issues regard-

ing connection between the feedback gains vector and resulting modal ampli-
tudes of vibrations are temporarily omitted at this point - they will be described
in details in the following sections of the present chapter). Similarly, the fmin

re

and fmin
im will denote the global minimums of the squared real and imaginary

acoustic pressure components (5.9) and (5.10), achievable for gain vectors G
opt
re

and G
opt
im , respectively. In the most favorable case, if G

opt
re = G

opt
im , then, ob-

viously also G
opt
c = G

opt
re = G

opt
im and, consequently: fmin

c = fmin
re + fmin

im .
However, in the general case, the G

opt
re does not have to be equal to G

opt
im and,

consequently, all the three introduced optimal feedback gain vectors can be dif-
ferent. Thus, the sought global minimum fmin

c cannot be determined using the
described procedure. Whatever is the case, following relation is always satisfied:

fmin
c ≤ fmin

re + fmin
im . (5.11)

Thus, for any chosen vector of feedback gains G it is always possible to estimate,
how close the achieved cost function value is to the theoretically best possible
(although not necessarily achievable) global minimum. Such quality factor can
be formally defined as the efficiency of the selected set of control parameters:

Ec
f (G) =

fmin
re + fmin

im

fre (G) + fim (G)
, (5.12)

where fre (G) and fim (G) denote the values of functions (5.9) and (5.10), ob-
tained for a vector of feedback gains G. In the first step of the assumed opti-
mization procedure, the efficiency value (5.12) is computed for the determined
gain vectors G

opt
re and G

opt
im . If any of the results is sufficiently close to 1, then

the achieved value of the cost function can be regarded as the acceptable ap-
proximation of the actual global minimum within the permitted range of control
parameters, and the optimization process finishes until the change of excitation
parameters is detected. In the unfavorable case, if the computed efficiency val-
ues are relatively low, the control optimization problem is solved numerically.
Whatever the case, the relevant procedures, in order to be time-effective and



5.2 Single feedback loop 101

computationally reasonable, require fast algorithms for determining the values
of components (5.9) and (5.10), related to the real and imaginary parts of the
acoustic pressure. The relevant issues are the subject of the further sections of
the present chapter.

5.2 Single feedback loop

In order to develop an optimal control algorithm for the considered problem,
the components of the cost function, given with Equations (5.9) and (5.10) have
to be formulated as functions of control parameters, which are the feedback
gains (5.1). For the sake of brevity, in the first step a simplified control system,
with only one feedback loop (one sensor-actuator pair) will be considered. The
results of the present considerations will be further developed in the following
section to address the case of the control system with multiple feedback loops.

Two sources of vibrations are present in the considered system. The primary
source is the external, harmonic excitation force, with the angular frequency ω
and spatial distribution Fext. At this point it is assumed that those parameters
are known in advance - the methods of determining them will be described in
Section 5.4, devoted to the problem of adaptation of the control system. The
modal amplitudes of vibrations of the plate structure excited by the external
force itself – i.e. in the absence of the forces introduced by the control system –
can be computed using Equation (2.21):

Fn =

∫∫

S
FS (x, y) ΦndS

ρshs (ω2
n − ω2)

∫∫

S
Φ2
ndS

, (5.13)

where Fn denotes the amplitude of the vibrational mode number n, excited by
the external disturbance in the absence of the forces introduced by the control
system.

The second source of excitation is the piezoelectric actuator. The modal
amplitudes of vibrations of the plate, excited by the actuator driven with the
harmonic voltage V are given with Equation (4.12). In the considered control
system, the actuator is fed with electric voltage signal induced on the sensor,
via the signal conditioning circuit and feedback amplifier with adjustable gain
G.

The whole system is assumed to be linear, so all the considered phenomena
occur with the imposed angular frequency ω and, accordingly to Equation (2.21),
the response of the structure to multiple excitation sources can be considered
as a sum of responses to each of the forces independently. Thus, the following
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relation concerning any vibrational mode number a, where 1 ≤ a ≤ N , with a
corresponding modal amplitude Wa can be stated:

Wa = Fa + |V | Ãa, (5.14)

where |V | is the amplitude of the driving, harmonic voltage V , which, in the
considered, steady state operating conditions is equal:

V = −Geiωt
N
∑

n=1

S̃nWn, (5.15)

where S̃n is the modal sensitivity of the sensor to mode n. Thus, substitut-
ing (5.15) into (5.14):

Wa = Fa −GÃa

N
∑

n=1

S̃nWn. (5.16)

The relation (5.16) can be converted into the following form:

Wa =
Fa

1 +GS̃aÃa

− GÃa

1 +GS̃aÃa

N
∑

n=1
n 6=a

S̃nWn. (5.17)

Equation (5.17) implies some important remarks that should be taken into
account while developing the active vibroacoustic control system. The term

1
1+GS̃aÃa

, included in the first part of the right-hand side of the equation, repre-

sents the well-known relation describing the resultant gain of the single input -
single output, closed-loop feedback controller. If we were able to create a single-
mode in-phase sensor/actuator pair, the system would remain unconditionally
stable and the amplitude of the selected mode reaches zero as the feedback
gain reaches infinity. Method of creating modal sensors/actuators has been de-
scribed by Lee and Moon [78]. However, the practical implementation of such
transducers is limited to simple one-dimensional beam structures and only to
few lowest-order structural modes. Another important disadvantage of single-
mode sensors/actuators is the fact that we would need one separate pair of
transducers for every mode we would like to control, which would lead to a very
complex, multi-layered structure.

Another remark that can be concluded from Equation (5.17), is that one of
the conditions of the stability of the considered active control system is meeting
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the following condition: GS̃aÃa 6= −1 for every mode number a, in the whole
considered frequency range. The sensor should also be sensitive to the structural
modes excited by the corresponding actuator. To provide the described features
collocated sensor/actuator pairs can be used. The relevant issues concerning the
practical implementation of such solution, are briefly described in Section 4.1 of
the present study.

In order to determine the optimal control strategy, i.e., optimal gain value
that will ensure minimization of the cost function, using the procedure described
in the previous section, the relation between the feedback gain and the resulting
modal amplitudes of vibrations has to be determined first. For this purpose,
Equation (5.16) is rewritten in the following form:

Wa

(

1 +GS̃aÃa

)

+GÃa

N
∑

n=1
n 6=a

S̃nWn = Fa. (5.18)

Equation (5.18) can be written for every single considered structural mode a,
where 1 ≤ a ≤ N . A set of such equations, providing a complete description of
the considered system, can be written in the following matrix form:

(

I +M
)

W = F, (5.19)

where I is a N × N identity matrix, W is the vector of modal amplitudes of
vibrations, given in the following form:

W =











W1

W2
...

WN











, (5.20)

F is the vector of modal amplitudes Fn, induced by the external excitation force:

F =











F1

F2
...

FN











, (5.21)

and M is a N ×N control system matrix of feedback coefficients:

M =











GÃ1S̃1 GÃ1S̃2 · · · GÃ1S̃N

GÃ2S̃1 GÃ2S̃2 · · · GÃ2S̃N

...
...

. . .
...

GÃN S̃1 GÃN S̃2 · · · GÃN S̃N











. (5.22)
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The response of the plate (namely, the modal amplitudes W) to all the exci-
tation sources (namely, external disturbance and the actuators) is sought. The
relevant formula can be obtained by rewriting Equation (5.19) in the following,
modified form:

W =
(

I +M
)−1

F. (5.23)

The computations of the inverse matrix
(

I +M
)−1

can be significantly im-
proved by noticing the fact that the matrix M can be expressed as a product
of two vectors and a scalar:

M = Ga s
T , (5.24)

where a is the vector of modal selectivity values of the actuator expressed in
the following form:

a = a (ω) =











Ã1

Ã2
...

ÃN











=











Ã1 (ω)

Ã2 (ω)
...

ÃN (ω)











(5.25)

and s is the vector of modal sensitivity values of the piezoelectric sensor ex-
pressed as follows:

s =











S̃1

S̃2
...

S̃N











. (5.26)

In the considered case, due to the form of matrix M (5.24), the inverse matrix
(

I +M
)−1

can be computed using Sherman-Morrison formula [102], namely:

(

I +M
)−1

= I−1 −
I−1Ga s

T I−1

1 +GaT I−1
s
= I − Ga s

T

1 +GaT s
. (5.27)

Thus, substituting (5.27) into (5.23), the sought relation between the modal
amplitudes of vibrations and the feedback gain value is eventually obtained:

W =

(

I − Ga s
T

1 +GaT s

)

F. (5.28)

Using the obtained relation (5.28), the real and imaginary components of the
acoustic pressure, given with Equations (5.6) and (5.7), respectively, can be
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computed with the following formula:

px (G) =
N
∑

n=1

PnWn = P
T
W = P

T
F− P

TGa s
T
F

1 +GaT s
, (5.29)

where px (G) is a function of feedback gain value which may refer to either
the real or imaginary part of the acoustic pressure (5.6) or (5.7), Pn denote
the relevant (either real or imaginary) modal radiation coefficients of the mode
number n, and P is a vector of those coefficients:

P =











P1

P2
...

PN











. (5.30)

Equation (5.29) is the basis for fast and computationally cheap algorithm of
determining the sought value of the acoustic pressure, as a function of the feed-
back gain. Thus, it allows to perform an efficient optimization procedure. How-
ever, it is still beneficial at this point to determine the gain values that would
minimize the partial cost functions fre and fim, given with Equations (5.9)
and (5.10), as those values can be used to estimate the potentially lowest achiev-
able value of the assumed cost function. The relevant procedure is described in
detail in the previous section.

It is assumed that the maximum available gain value Gmax is chosen in such
a way, that the system is unconditionally stable, i.e., the following condition is
satisfied:

∀G∈〈0;Gmax〉 Ga
T
s 6= −1 (5.31)

for the relevant vectors a and s. Under the considered conditions, the function
px (G), given with Equation (5.29) is a monotonic function of the variable G.
The optimal gain value Gopt, for which the function p2x (G), corresponding to
either the real or imaginary, partial cost function (5.9) or (5.10), achieves its
minimum within the considered, available gain range is sought. Three cases are
possible for the considered problem:

1. If px (0)·px (Gmax) ≤ 0, then exists such value Gopt, for which px
(

Gopt
)

=
0. This optimal feedback gain can be computed using the following rela-
tion:

Gopt =
P

T
F

PTa sTF−PTF
. (5.32)
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2. If any of following occurs:

(a) px (0) · px (Gmax) > 0 and px (0) > px (G
max) > 0, or

(b) px (0) · px (Gmax) > 0 and px (0) < px (G
max) < 0,

then, Gopt = Gmax.

3. The last possible case occurs when one of the following conditions is
satisfied:

(a) px (0) · px (Gmax) > 0 and px (0) < px (G
max) and px (G

max) > 0, or

(b) px (0) · px (Gmax) > 0 and px (0) > px (G
max) and px (G

max) < 0.

In this case Gopt = 0.

5.3 Multiple independent feedback loops

The goal of the present section is to develop the investigations described in
Section 5.2 into a more general case of an active control system with multiple
independent feedback loops. It is assumed that in the considered case the sys-
tem contain M sensor-actuator pairs. The gains of the feedback amplifiers are
described with the vector G given with (5.1). Despite the number of control
loops, all of the other assumptions concerning the system, controlled structure
and the external excitation, presented in the previous sections of this chapter
are valid. The steady-state vibrations of the plate can be in this case described
with a following, modified form of equation (5.23):

W =
(

I + M̃
)−1

F, (5.33)

where M̃ is a N ×N control system matrix of feedback coefficients, given with:

M̃ =
M
∑

k=1











GkÃk1S̃k1 GkÃk1S̃k2 · · · GkÃk1S̃kN

GkÃk2S̃k1 GkÃk2S̃k2 · · · GkÃk2S̃kN

...
...

. . .
...

GkÃkN S̃k1 GkÃkN S̃k2 · · · GkÃkN S̃kN











, (5.34)

where Ãka is the selectivity function of actuator k to structural mode a (see
Equations (4.12) and (4.13)), while S̃ka denotes the sensitivity of sensor k to
the same mode a (see Equation (4.8)). For the sake of brevity and for the
computational purposes it is convenient to write matrix M̃ in the following
form:

M̃ =
M
∑

k=1

M̃k, (5.35)
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where M̃k is a partial control matrix, connected with a feedback loop number k

and defined as:

M̃k =











GkÃk1S̃k1 GkÃk1S̃k2 · · · GkÃk1S̃kN

GkÃk2S̃k1 GkÃk2S̃k2 · · · GkÃk2S̃kN

...
...

. . .
...

GkÃkN S̃k1 GkÃkN S̃k2 · · · GkÃkN S̃kN











. (5.36)

Analogously as in the case of single feedback loop system (see Equation (5.24)),
the partial matrices M̃k are the first order matrices, which can be expressed as:

M̃k = Gk ak sk
T , (5.37)

where:

ak =











Ãk1

Ãk2
...

ÃkN











(5.38)

and

s =











S̃k1

S̃k2
...

S̃kN











. (5.39)

The following notation is also introduced:

M̃(k) = M̃ − M̃k =
M
∑

l=1
l 6=k

M̃l. (5.40)

Equation (5.33) can be rewritten in the following form:

W =

(

I + M̃(k) + M̃k

)−1

F. (5.41)

Taking into account relation (5.37) and – referring to the procedures described
in the previous section of the present chapter – the following relation can be
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written using Sherman-Morrison formula:

(

I + M̃(k) + M̃k

)−1

=

(

I + M̃(k)

)−1

−

(

I + M̃(k)

)−1

Gk ak sk
T

(

I + M̃(k)

)−1

1 +Gk ak
T

(

I + M̃(k)

)−1

sk

.

(5.42)
The relation (5.42) can be used to develop an effective, iterative algorithm for

computation of the inverse matrix
(

I + M̃
)−1

for any applicable set of feedback

gain values G1, G2, . . . , GM . Such an algorithm would be very beneficial from
the point of view of the control optimization procedure described in Section 5.1.
It is assumed that in the beginning all of the feedback gains are set to 0. Then,
the gain of the first feedback loop is set to the desired value G1 and the relevant

inverse matrix
(

I + M̃1

)−1
is computed, based on Equation (5.27). Afterwards,

the gain of the second feedback loop is set to the desired value G2 and the inverse

matrix
(

I + M̃1 + M̃2

)−1
is computed using Equation (5.42) and the result of

the previous step. The procedure is repeated until the complete system control
matrix M̃ is determined. The algorithm can be described with the following,
subsequent equations:

(

I + M̃1

)−1
= I − G1 a1 s1

T

1 +Ga1
T s1

, (5.43)

(

I + M̃1 + M̃2

)−1
=

(

I + M̃1

)−1
−

(

I + M̃1

)−1
G2 a2 s2

T
(

I + M̃1

)−1

1 +G2 a2
T
(

I + M̃1

)−1
s2

,

(5.44)
...

(

I + M̃
)−1

=

(

I + M̃(M)

)−1

−

(

I + M̃(M)

)−1

GM aM sM
T

(

I + M̃(M)

)−1

1 +GM aM
T

(

I + M̃(M)

)−1

sM

.

(5.45)
The algorithm described with Equations (5.43) to (5.45) also allows to auto-
matically omit those terms for which the desired feedback gain value is equal
to 0, and thus further improve computational time and cost. The calculation
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order may be obviously chosen freely and it does not have to follow the assumed
numeration of the feedback loops, i.e., 1, 2, . . . ,M , as in the presented example.

Despite the described algorithm, in order to perform a fast and effective
control optimization procedure, the potentially optimal feedback vectors G

opt
re

and G
opt
im (defined in Section 5.1) are sought. The relevant partial cost functions

that should be minimized are described with following equation:

[px (G)]2 = (PW)2 , (5.46)

where px (G) is the function of feedback gain vector, which may refer to either the
real or imaginary part of the acoustic pressure (see Equations (5.6) and (5.7)).
Substituting Equation (5.42) into (5.41) and (5.46), the following relation is
finally obtained:

px (G) = P
T











(

I + M̃(k)

)−1

−

(

I + M̃(k)

)−1

Gk ak sk
T

(

I + M̃(k)

)−1

1 +Gk ak
T

(

I + M̃(k)

)−1

sk











F,

(5.47)
for every single k, where k ∈ {1, 2, . . . ,M}. Thus, if all of the feedback gains,
except the one number k, are fixed and considered as constants, then, upholding
the assumptions regarding the available gain ranges presented in the previous
section, as it can be shown based on the properties of Equation (5.47), under
such conditions function px (G) is a monotonic function of every single gain
parameter Gk. This observation implies a very important conclusion, namely: if
any of the elements Gk of a vector G is neither equal to 0 nor to its maximum
available value Gmax

k , then the value of function px (G) can be both increased
and decreased by changing the value of the parameter Gk.

For the sake of brevity, the following definitions are introduced:

The control polytope denotes the set of all vectors G whose elements Gk

satisfy the condition 0 ≤ Gk ≤ Gmax
k – i.e., the whole available control

space.

The vertices of the control polytope denote the set of all of the vectors G
belonging to the control polytope whose elements Gk are either equal to 0
or to their maximum permitted values Gmax

k . This definition can be also
formulated using the following notation:

∀k∈{1,2,...,M} Gk = 0 ∨ Gk = Gmax
k . (5.48)
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The edges of the control polytope denote the set of all of the vectors G

belonging to the control polytope whose all elements Gk except exactly
one are either equal to 0 or to their maximum permitted values Gmax

k .
The one – and the only one – element of the vector is nether equal to 0
nor to its maximum value. This definition can be also formulated using
the following notation:

∃!16l6M∀k∈{1,2,...,M}

{

0 < Gk < Gmax
k , k = l,

Gk = 0 ∨ Gk = Gmax
k k 6= l.

(5.49)

The neighboring vertices of the control polytope are defined as such pairs
of vectors Gv1 and Gv2 belonging to the set of vertices of the control
polytope whose all elements except one are equal. The differing element
defines the common edge between the neighboring vertices.

Using the introduced nomenclature and referring to the previously described
observations regarding the properties of Equation (5.47), the following conclu-
sions concerning the process of determining optimal feedback gain values G

opt
re

and G
opt
im can be drawn:

1. If the value of the function px (G) is not equal to 0 for any vector G

belonging to the considered control polytope, then the sought optimal
feedback gain vector (either Gopt

re or Gopt
im ) can be found within the vertices

of the control polytope

2. If a vector G, belonging to the control polytope, for which px (G) = 0
exists, then the sought value of the global minimum of the considered
component of the cost function (either fre or fim) is also equal to 0.
This also implies that there exists such gain vector G

0, belonging to
either vertives or edges of the control polytope, for which the condition
px

(

G
0
)

= 0 is also satisfied. If the vector G
0 belongs to the edges of

the control polytope, then at least one pair of neighboring vertices Gv1

and Gv2 for which the following condition is satisfied exists: px
(

Gv1
)

·
px

(

Gv2
)

< 0. The optimal gain vector G0 can be found within the set of
vectors creating the common edge between the vertices Gv1 and Gv2, by
considering all other gains as constants and solving the single feedback
loop problem.

The presented conclusions allow to select only a small subset of the control
polytope, with a finite number of elements, among which the optimal feedback
gain values G

opt
re and G

opt
im should be sought. This namely refers to the edges of

the control polytope. Thus, if the number of feedback loops is equal M , then the
maximum number of points for which computations should be performed is equal
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2M , for each of the components of the cost function. The defined procedures
enable performing a fast and effective optimal control algorithm according to
the guidelines described in Section 5.1, in the considered, general case of the
system with multiple independent feedback loops.

5.4 Identification of the external disturbance

In the considerations described in the previous sections of the present chap-
ter, vector F, characterizing the parameters of the external excitation force (in
terms of the response of the considered structure) was treated as known. How-
ever, due to the undertaken assumptions, the control system does not possess
such knowledge and it has to have the ability to adapt to changing (steady-state)
excitation conditions. No external sensors, such as, for instance, microphones,
are included in the system, so, all the information regarding the current state of
the structure has to be based on the electric signal induced on the piezoelectric
sensors. The adaptation process should in general have the following form:

1. The parameters of the external disturbance are determined based on the
signals from piezoelectric sensors and on the knowledge on the modal
characteristics of the controlled structure.

2. Optimal feedback gain values are computed using the procedures de-
scribed in Sections 5.1–5.3 and set in the relevant amplifiers.

3. The system continues monitoring the electric signals from the sensors,
checking for deviations from the predicted values, corresponding to the
assumed vibrational pattern.

4. If the change in excitation conditions is detected, the algorithm is per-
formed again, starting from the first step.

According to the assumed form of description of the control system, the volt-
age amplitudes of signals induced on the piezoelectric sensors due to vibrations
of the plate can be written in the following, vector form:

U =











Ũ1

Ũ2
...

ŨM











. (5.50)
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The voltage amplitude of the the electric signal induced on a sensor number m
is equal:

Ũm =

N
∑

n=1

S̃mnWn, (5.51)

where S̃mn is the sensitivity function of sensor m to structural mode n. The
amplitude Wn of the nth mode is equal:

Wn = Fn +
M
∑

m=1

ÃmnVm, (5.52)

where Vm denotes the amplitude of the voltage signal driving the mth actuator,
given with the following relation:

Vm = −GmŨm. (5.53)

Substituting Equations (5.51), (5.52) and (5.53) into (5.50), the following rela-
tion is obtained:
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. (5.54)

Thus:
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. (5.55)

All coefficients in Equation (5.55) are known, except for the sought parameters
of the external excitation Fn. In order to determine them, Equation (5.55) is
first written in the following form:

SF = ũ, (5.56)
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where S is the system sensitivity matrix, defined as:

S =











S̃11 S̃12 · · · S̃1N

S̃21 S̃22 · · · S̃2N
...

...
. . .

...

S̃M1 S̃M2 · · · S̃MN











(5.57)

and the vector ũ is given with the following relation:

ũ =
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. (5.58)

All of the elements of both matrix S and vector ũ can be computed based on
the known parameters of the system and the controlled structure, as well as on
the excitation frequency (this concerns the selectivity functions of the actuators
which are frequency-dependent). Due to the assumed, harmonic form of the
considered signals, the frequency of vibrations can be easily determined, based
on the signal from piezoelectric sensors. The method of solving Equation (5.56)
for the unknown parameters of the external excitation depends on the relation
between the number of considered structural modes of vibrations N and the
number of control feedback loops M . Three cases are possible:

1. If M < N then the equation system expressed in the matrix form (5.56)
is underdetermined, with an infinite number of solutions for the sought
vector F. The selection of a specific, estimated solution F

∗ is based on
additional condition - in the present considerations it is assumed, that
the L2-norm is minimized and the estimated solution is computed using
the following equation:

F
∗ = ST

(

SST
)−1

ũ. (5.59)

2. If M = N then the equation system expressed in the matrix form (5.56)
has one unique solution (assuming that the system sensitivity matrix has
full rank - the modal characteristics of the sensors are linearly indepen-
dent), which can be computed as:

F
∗ =

(

S
)−1

ũ. (5.60)
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3. If M > N then the equation system expressed in the matrix form (5.56) is
overdetermined and the least-squares method is used in order to estimate
the sought vector of the parameters of external excitation:

F
∗ =

(

ST S
)−1

ST
ũ. (5.61)

The described algorithm can be used to perform the adaptation process, i.e.,
to provide a necessary knowledge on the parameters of external excitation re-
quired for the control optimization procedure. The algorithm takes into account
all the assumed available knowledge concerning both the controlled structure
(eigenfrequencies and the corresponding mode shape functions), as well as the
elements of the control system (modal sensitivity and selectivity functions of the
piezoelectric sensors and actuators). However, it is also possible that some addi-
tional information, regarding probable, predicted characteristics of the external
excitation source are also available. For instance, if the propagation paths of the
disturbances in the environment to which the considered structure belongs are
to some extent predictable, then some modal components can be regarded as
more and other as less probable to occur. The presented approach does not allow
to include such knowledge, although, in some cases it could be very beneficial
to do so.

In order to enable including the described, additional information, the pre-
sented adaptation algorithm has to be modified and developed. It is assumed
that the predictions regarding the characteristics of external disturbance are
introduced as ratios of selected modal components, in the following form:

F ∗
k

βk
=

F ∗
l

βl
, (5.62)

where F ∗
k and F ∗

l are the elements of the estimated vector of the modal pa-
rameters of the external excitation F

∗, corresponding to structural modes of
vibrations number k and l, respectively. The βk and βl are the correspond-
ing modal weight coefficients. Equation (5.62) defines the desired ratio of two
selected modal components of vector F

∗.

It is assumed that one of the modal coefficients, namely, for instance, the
one denoted with index k is considered as the reference parameter. The desired,
predicted ratios of all other considered coefficients with indexes l, where 1 ≤
l ≤ N and l 6= k are written in the following form, equivalent with (5.62):

F ∗
l − βl

βk
F ∗
k = 0. (5.63)



5.4 Identification of the external disturbance 115

All defined relations in the form (5.63) can be arranged as a set of equations
and written in the following matrix form:
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. (5.64)

The left hand side matrix has dimensions (N − 1) × N . The equation (5.64)
represents the predicted, desired form of the vector F. The second equation
system, that obviously has to be included in the adaptation algorithm, is given
with (5.56) and represents the modal parameters of the external excitation,
determined from the measurements. Both relations (5.56) and (5.64) should
contribute to the final result, in order to obtain a solution that is consistent
with the measurements on the one hand and as close as possible to the predic-
tions, on the other hand. Tikhonov regularization [103] is used to balance those
contributions and to determine the optimal solution. The combination of (5.56)
and (5.64) leads to the following matrix equation:
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, (5.65)

where γ is the regularization parameter. Equation (5.65) is solved for various
values of the regularization parameters, in order to find such a value γopt and
the corresponding, estimated solution F

∗
opt for which the following condition is

satisfied:

∀γ∈〈0;∞〉

(

SF
∗
opt

)2
+

(

γoptΓF
∗
opt

)2 ≤
(

SF
∗
)2

+
(

γΓF
∗
)2

, (5.66)

where γ denotes any chosen value of the regularization parameter and F
∗ is

the corresponding solution to Equation (5.65). The Γ denotes the left hand
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side matrix from Equation (5.64). In other words, the total error between the
optimal solution F

∗
opt and both predictions and measurements is minimized. The

presented, modified, and developed version of the adaptation algorithm should
be especially useful in the case of highly underdetermined systems (i.e., in the
cases when the number of the considered vibrational modes N is much greater
than the number of the feedback control loops introduced in the system M).

5.5 Implementation of the active control system

Practical implementation and experimental validation of the active vibroa-
coustic approach described in the present study require both dedicated hard-
ware and software. The relevant means have been developed, implemented, and
tested. A large number of prototypes of various electronic subsystems were con-
structed and evaluated within the framework of the conducted research. The
initial concepts were significantly improved by taking into account the conclu-
sions drawn at the successive design stages. A general schematic diagram of the
final version of the developed active control system is presented in Figure 5.1.
Only a single control channel (single feedback loop) is presented in order to il-
lustrate the assumed principles of operation - the target system should consists
of an appropriate, desired number of such units.
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Figure 5.1. General schematic diagram of the developed active vibroacoustic control system
(single feedback loop).
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The most important, original feature of the developed system is separation
of the independent, fully analogue feedback loop connecting piezoelectric sensor
and actuator. Such a solution, besides circuit simplification, allows to avoid all
the potential complications related with signal conversion (time delays, jitter,
noise) and to ensure a high reliability. The considered control system is very sen-
sitive to even small, unintended phase shifts between input and output, as they
strongly affect the control performance and may lead to loss of stability. Data
acquisition and analysis are performed independently, by a separate digital sub-
system. The presented approach allows to significantly reduce the requirements
imposed on the control logic.

The piezoelectric sensor is connected directly to a charge amplifier circuit,
which ensures impedance matching and amplification. The output of the charge
amplifier is connected to an optionally activated 0/180◦ phase inverter. Such
a solution enables coupling piezoelectric sensors and actuators with the same
or opposite polarizations, and increases the versatility of the developed device.
The signal from piezoelectric sensor, after conditioning, is also fed to the input
of an analog-to-digital converter, and further to the control logic unit, where it
is processed to extract the information necessary to determine a current state of
the controlled structure and the relevant optimal control strategy. In parallel, the
same signal is also fed to the input of a variable gain amplifier (VGA) whose gain
value is governed by the logic unit. This block of the system enables realization
of the selected control strategy. The output signal is fed to the piezoelectric
actuator via a power amplifier, which is powered from a separate, symmetrical
power supply, with a higher voltage. Such a solution enables extending the range
of the output driving signal and improving its quality.

A circuit diagram of a single channel of the final version of the analog part of
the controller is presented in Figure 5.2. Construction of the signal conditioning
circuit is described in detail in Section 4.4. A high number of the selectable
feedback components of the charge amplifier (10 resistors and 10 capacitors
which can be freely combined in parallel connections using sets of switches)
ensures wide possibilities in adjusting both gain and lower cutoff frequency. The
phase inverter is constructed based on TL072 low noise operational amplifier
working as inverting amplifier with a unity gain.

The SSM2018 voltage controlled amplifier (VCA) is used to adjust the gain
of the feedback loop and perform the optimal control strategy. The gain of this
amplifier is described with the following exponential relation:

gSSM = e(−4·V SSM
C ), (5.67)

where V SSM
C is the constant, control voltage applied to the amplifier. The avail-
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Figure 5.2. Circuit diagram of the final version of the feedback controller used for experimental
investigations - analogue part, one single channel (out of four in total).

able gain range is 140 dB (from -100 dB up to 40 dB). The output of the voltage
controlled amplifier is connected to the input of LM675 power amplifier which
can operate at supply voltages up to 60 V and deliver output currents reaching
up to 3 A.

The developed analog part of the active control system was successfully
constructed and tested. A picture of the final device, implementing four feedback
loops, is presented in Figure 5.3. The electronic components were mounted on a
double-sided printed circuit board. The power amplifiers were attached to heat
sinks in order to prevent their overheating in case of any system failure.

The digital part of the control system was implemented using National In-
struments cRIO platform, model 9075. The communication with the described
analog subsystem was performed via additional ADC and DAC modules. The
necessary control software was developed under the LabView environment. The
software allows to view in the real-time signals from eight channels (four sensors
and four actuators) and to adjust gains of four independent feedback loops. The
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Figure 5.3. Final version of four-channel feedback controller used for experimental investiga-
tions - analogue part.

communication with the control logic unit is performed via Ethernet, using a
laptop with dedicated software implementing the user interface. The software
control panel of the described system is presented in Figure 5.4.

5.6 Experimental investigations

The experimental investigations concerning capabilities and limitations of
the developed active vibroacoustic control approach were carried out using a
rectangle-shaped aluminium plate, which was 300 mm long, 200 mm wide, and
1 mm thick. The plate was clamped by a 6 cm long middle section of its shorter
edge, with all other edges free. The considered structure is presented in Fig-
ure 5.5. The plate was also used for other experimental investigations described
in the previous chapters of the present study, thus the obtained results and
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Figure 5.4. Software control panel of the developed active control system.

drawn conclusions concerning the vibrational characteristics (Chapter 2), acous-
tic radiation (Chapter 3), and sensing and exciting vibrations using piezoelectric
transducers (Chapter 4) are valid in terms of the present considerations.

Five pairs of piezoelectric transducers made of Pz29 piezoceramic material
(Ferroperm) were attached symmetrically on both sides of the considered struc-
ture. The transducers were 3 cm wide, 2 cm long and 0,3 mm thick. The trans-
ducers were glued to the plate using the technology described in Section 4.5,
with the plate as a common ground electrode. In order to describe the positions
of the transducers on the plate and also to define the relative coordinates of
points in the ambient space at which the acoustic measurements were taken,
a global cartesian coordinate system, with XY axes parallel to the shorter and
longer edges of the plate, respectively, is introduced. Assuming the spatial con-
figuration of the plate during the experiments as presented in Figure 5.5, with
the longer edge perpendicular to the ground plane, the origin of the coordinate
system is situated in the lower left corner of the plate. Positions of the piezo-
electric transducers on the surfaces of the plate can be thus described as it is
presented in Table 5.1.

Pairs of the transducers with numbers 1 to 4 were used as sensors and ac-
tuators (i.e., one of the transducers in each pair served as sensor, while the
other, attached symmetrically, as actuator). Thus, up to four independent feed-
back loops were available in the assumed configuration of the control system.
The pair number 5 was used to generate vibrations of the structure, simulat-
ing external excitation source – both transducers were connected to the har-
monic signal generator, with adjustable amplitude and frequency. Accordingly
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Figure 5.5. Plate structure used for the experimental investigations.

Number of pair of piezoelec-
tric transducers

XY coordinates (in centime-
ters, middle point of the
transducer)

1 (5 ; 7)
2 (7 ; 18)
3 (10 ; 10)
4 (18 ; 25)
5 (16 ; 4)

Table 5.1. Locations of pairs of piezoelectric transducers used for the experimental investiga-
tions on the surfaces of the plate structure.

to the considerations presented in Chapter 4, the transducers arranged in the
described configurations create collocated sensor-actuator pairs. Such a config-
uration should theoretically ensure an absolute stability of the control system,
at least in the case of a single feedback loop operation, as the products of the
corresponding modal sensitivity and selectivity values in the denominator in
Equation (5.17) are always positive.



122 5. Active vibroacoustic control system

The experiments were carried out in an anechoic chamber. The plate was
clamped with a vice attached to a tripod. The acoustic measurements were
performed using Brüel&Kjær half inch, precise electret microphone, connected
to a Nexus preamplifier by the same manufacturer. The amplitude of the acoustic
pressure was determined using Tektronix TDS2004C oscilloscope. The wires
attached to the microphone and piezoelectric transducers were routed outside
the acoustic chamber, to another room, where all the necessary control and
measurement equipment was situated. The stands for both plate and microphone
were covered with acoustic foam panels, in order to minimize the reflections.
The laboratory stand used for the experimental investigations on the active
vibroacoustic control is presented in Figure 5.6.

Figure 5.6. Laboratory stand used for the experimental investigations on the active vibroa-
coustic control.

The piezoelectric transducers used to generate vibrations of the plate were
fed with harmonic signals from a programmable generator, with voltage ampli-
tudes reaching up to ±30 V. The levels of excitations were limited by occurring
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nonlinear effects. Very sharp resonant characteristics of vibrations of the plate
were observed, with very high amplitudes at frequencies corresponding to the
determined eigenfrequencies of the structure (see Table 2.1) and very low levels
of vibrations for off-resonant excitations. The acoustic measurements revealed
that significant noise levels generated by the plate are observed only for reso-
nant vibrations. For this reason only the excitation frequencies equal to some
selected eigenfrequencies of the structure were used in the experiments. Accord-
ing to considerations presented in Sections 2.1 and 4.7 of the present study, in
such cases only one mode of vibrations, corresponding to the selected eigenfre-
quency, can be considered, as the amplitudes of other forms of vibrations are
relatively low enough to be neglected. This conclusion was also verified by the
measurements performed using a laser vibrometer. Thus, the control strategy,
resulting from the theoretical approach presented in Sections 5.1-5.4 can be sig-
nificantly simplified. The adaptivity process can be based only on the frequency
analysis of the signals from the piezoelectric sensors, as the state of the structure
in the considered case is uniquely determined by the resonant frequency and the
amplitude of vibrations. The optimal control strategy in such case should the-
oretically consist of setting the gains of all the feedback loops of the system to
their maximum available values.

The measurements were performed using a microphone positioned at differ-
ent points of the ambient space. The coordinates of those points are expressed
in terms of the assumed global coordinate system, with the plate located in the
plane z = 0. The microphone was calibrated before each session of measure-
ments, using a dedicated calibrator from Brüel&Kjær. Thus, the determined
amplitudes of the electric signals from the preamplifier were converted into the
true values of the acoustic pressure. The experiments were carried out for var-
ious configurations of the involved feedback loops in the active control system.
The results are presented in plots and tables below. The non-dimensional gain
value Gx

[

V
V

]

, where x denotes the number of considered feedback loops, define
the actual gain of the corresponding voltage controlled amplifier (see schematic
diagram in Figure 5.1), set by the digital part of the control system. It does not
include either the gain of the charge amplifier or the gain of the output power
amplifier – those parameters of the control system were held constant for every
measurement.

The presented results concern four different vibrational modes of the plate,
namely, the 9th, 11th, 13th, and 14th mode (see Table 2.1 for details). The selected
forms of vibrations were chosen due to relatively high observed sound pressure
levels and due to the fact that the considered results are representative in terms
of the control system performance and stability. In other words, the presented
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levels of sound reduction cover the whole range of the observed cases, for all
investigated structural modes of the considered structure, including the both
highest and lowest reduction levels. The number of introduced results is limited
to such a representative set, as the purpose of the present study is not to focus on
one, specific structure and system configuration, but to investigate the general
idea and the underlying mechanisms basing on a representative example.

Plots in Figures 5.7 and 5.8 present the measured sound pressure level gen-
erated by the plate structure vibrating in the 11th structural mode at frequency
320 Hz, at a point of the ambient space with coordinates x = 2 cm, y = 25 cm, z
= 3 cm, as a function of the gain of feedback loops no. 1 and 2, respectively. Only
one feedback loop of the control system was active during the measurements.
As it can be seen, very similar, significant reductions in the sound pressure level
– reaching about 3 dB – were achieved in both considered cases. The inves-
tigations also revealed problems with stability of the developed active control
system which were not predicted by the theoretical considerations. In theory,
the utilized collocated pairs of piezoelectric sensors and actuators should ensure
a total stability of the system. However, in practice it turned out, that for every
frequency of vibrations and every feedback loop exists some critical gain value
beyond which the plate falls into some higher order resonances, at eigenfrequen-
cies greater than about 1-2 kHz. Decreasing the gain below this critical value
instantly eliminates the problem. Thus, the maximum gain value in all of the
presented further plots and tables is not the maximum available gain but it is
determined only by the stability issues (unless otherwise noted).

The plot in Figure 5.9 presents the measured sound pressure level gener-
ated by the plate structure vibrating in the 11th structural mode at frequency
320 Hz, at a point of the ambient space with coordinates x = 2 cm, y = 25 cm,
z = 3 cm, as a function of gains G1 and G2 of feedback loops no. 1 and 2,
operating together. As it can be seen, by combining the operation of the two
independent control loops, further reduction in generated noise can be achieved
– the minimum measured sound pressure level in this case is equal 74,72 dB,
which is about 3 dB less than the minimum levels obtained for both feedback
loops operating alone (about 6 dB drop in total is observed). It is worth notic-
ing, that this result is obtained for lower maximum available gain values than
in the cases illustrated in Figures 5.7 and 5.8, as the critical gains determined
by the stability issues were significantly lower, as compared to the independent,
single-feedback loop operation.

The plots in Figures 5.10 and 5.11 present the measured sound pressure
level generated by the plate structure vibrating in the 13th structural mode at
frequency 380 Hz, at the same point of the ambient space, with the coordinates
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Figure 5.7. Sound pressure level as a function of gain value of feedback loop no. 1 for the
plate vibrating in the 11

th structural mode, at frequency 320 Hz. Position of the microphone:
x = 2 cm, y = 25 cm, z = 3 cm.
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Figure 5.8. Sound pressure level as a function of gain value of feedback loop no. 2 for the
plate vibrating in the 11

th structural mode, at frequency 320 Hz. Position of the microphone:
x = 2 cm, y = 25 cm, z = 3 cm.
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Figure 5.9. Sound pressure level as a function of gain values of feedback loops no. 1 and
2, for the plate vibrating in the 11

th structural mode, at frequency 320 Hz. Position of the
microphone: x = 2 cm, y = 25 cm, z = 3 cm.

x = 2 cm, y = 25 cm, z = 3 cm, as a function of the gain of feedback loops no. 1
and 2, respectively. About a 3,5 dB drop in the sound pressure level is observed
due to the operation of loop no. 1, and almost a 6 db drop for loop no. 2.
Thus, the reduction is better than in the previously described case concerning
structural mode no. 11, even though the maximum applied gain values were
identical in both cases. This observation agrees with the theoretical predictions
that the control performance should strongly depend on both parameters of
vibrations and modal characteristics of the utilized sensor-actuator pairs.

The plot in Figure 5.12 presents the measured sound pressure level generated
by the plate structure vibrating in the 13th structural mode at frequency 380 Hz,
at a point of the ambient space with the coordinates x = 2 cm, y = 25 cm,
z = 3 cm, as a function of gains G1 and G2 of feedback loops no. 1 and 2,
operating together. Once again, the observations prove that the joint operation
of two independent feedback loops helps to achieve a better control performance
than the single-feedback loop operation. In the described case about a 2,5 dB
additional reduction is observed for the joint operation and identical maximum
gain values.

The plot in Figure 5.13 presents the measured sound pressure level generated
by the plate structure vibrating in the 14th structural mode at frequency 411 Hz,
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Figure 5.10. Sound pressure level as a function of gain value of feedback loop no. 1 for the
plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the microphone:
x = 2 cm, y = 25 cm, z = 3 cm.
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Figure 5.11. Sound pressure level as a function of gain value of feedback loop no. 2 for the
plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the microphone:
x = 2 cm, y = 25 cm, z = 3 cm.
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Figure 5.12. Sound pressure level as a function of gain values of feedback loops no. 1 and
2, for the plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the
microphone: x = 2 cm, y = 25 cm, z = 3 cm.

at the point of the ambient space with coordinates x = 2 cm, y = 25 cm, z =
3 cm, as a function of the gain of feedback loop no. 4. In this case, about a
1 dB drop is achieved. This result, as compared to the other results concerning
different modes of vibrations and different feedback loops, presented for instance
in Figures 5.10 and 5.11, can be regarded as a relatively poor level of noise
reduction.

The plot in Figure 5.14 presents analogous results to those presented in the
Figure 5.13, however, obtained for two different feedback loops – namely, no. 1
and 2, acting simultaneously. As it can be seen, a significantly greater level of
noise reduction is obtained in this case – reaching a maximum of about 4 dB.

Table 5.2 presents measured sound pressure levels for various combinations of
cooperation of feedback loops no. 1, 2 and 4, obtained for analogous conditions
to which the plots in Figures 5.13 and 5.14 are referred. The results clearly indi-
cate that the most beneficial (in terms of achievable levels of sound reduction)
is cooperation of all the considered feedback loops. An interesting observation
is that by introducing the feedback loop no. 4 to loops no. 1 and 2, a further
3,5 dB drop in sound pressure level is obtained – despite the fact that the loop
number 4 operating alone allowed only for about 1 dB of noise reduction (see
plot in Figure 5.13).
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Figure 5.13. Sound pressure level as a function of gain value of feedback loop no. 4 for the
plate vibrating in the 14

th structural mode, at frequency 411 Hz. Position of the microphone:
x = 2 cm, y = 25 cm, z = 3 cm.
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Figure 5.14. Sound pressure level as a function of gain values of feedback loops no. 1 and 2, for
plate vibrating in the 14

th structural mode, at frequency 411 Hz. Position of the microphone:
x = 2 cm, y = 25 cm, z = 3 cm.
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G1 G2 G4 SPL [dB]

0 0 0 80.32
3 0 0 78.78
0 5 0 79.64
0 0 3 79.64
3 5 0 76.24
3 0 3 74.93
0 5 3 77.07
3 5 3 72,89

Table 5.2. Sound pressure level as a function of gain values of feedback loops no. 1, 2 and 4
for the plate vibrating in the 14

th structural mode, at frequency 411 Hz. Position of the
microphone: x = 2 cm, y = 25 cm, z = 3 cm.

The plots in Figures 5.15-5.17 present the sound pressure level generated by
the plate structure vibrating in the 9th structural mode at frequency 269 Hz, at
a point of the ambient space with coordinates x=10 cm, y=15 cm, z=5 cm, as
a function of the gains of the feedback loops no. 2, 3 and 4, respectively. The
achieved level of noise reduction is very low in all presented cases – in fact, for
feedback loops no. 3 and 4 it may actually be considered as negligible.
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Mode no. 9, frequency 269 Hz, feedback loop no. 2

Figure 5.15. Sound pressure level as a function of gain value of feedback loop no. 2 for the
plate vibrating in the 9

th structural mode, at frequency 269 Hz. Position of the microphone:
x = 10 cm, y = 15 cm, z = 5 cm.
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Figure 5.16. Sound pressure level as a function of gain value of feedback loop no. 3 for the
plate vibrating in the 9

th structural mode, at frequency 269 Hz. Position of the microphone:
x = 10 cm, y = 15 cm, z = 5 cm.

The plots in Figures 5.18-5.21 present the sound pressure level generated by
the plate structure vibrating in the 13th structural mode at frequency 380 Hz,
at a point of the ambient space with the coordinates x = 10 cm, y = 15 cm, z =
5 cm, as a function of the gains of all the considered feedback loops. As it can
be seen, the achieved level of noise reduction in the case of feedback loops no. 1
and 2 is higher than in the cases presented in Figures 5.10 and 5.11 concerning
different point of the ambient space. The noise reduction achieved with feedback
loop no. 3 is almost none. For feedback loop no. 4 only slight drop in the sound
pressure level, less than 1 dB is observed.

The results obtained for the joint operation of feedback loops no. 1 and 2,
concerning the same operating conditions as in the previously described cases, il-
lustrated in Figures 5.18-5.21, are presented in Figure 5.22. A 10,2 dB maximum
noise reduction level is achieved. Once again it can be seen that a simultane-
ous operation of multiple feedback loops result in significantly higher levels of
noise reduction than in the cases of single loops operating alone, with the same
maximum gain values.

Table 5.3 presents the measured sound pressure levels generated by the plate
structure vibrating in the 13th structural mode at frequency 380 Hz, at a point
of the ambient space with the coordinates x = 10 cm, y = 15 cm, z = 5 cm, as
a function of various combinations of the gain values of all the feedback loops
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Figure 5.17. Sound pressure level as a function of gain value of feedback loop no. 4 for the
plate vibrating in the 9

th structural mode, at frequency 269 Hz. Position of the microphone:
x = 10 cm, y = 15 cm, z = 5 cm.
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Figure 5.18. Sound pressure level as a function of gain value of feedback loop no. 1 for the
plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the microphone:
x = 10 cm, y = 15 cm, z = 5 cm.
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Figure 5.19. Sound pressure level as a function of gain value of feedback loop no. 2 for the
plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the microphone:
x = 10 cm, y = 15 cm, z = 5 cm.
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Figure 5.20. Sound pressure level as a function of gain value of feedback loop no. 3 for the
plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the microphone:
x = 10 cm, y = 15 cm, z = 5 cm.
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Figure 5.21. Sound pressure level as a function of gain value of feedback loop no. 4 for the
plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the microphone:
x = 10 cm, y = 15 cm, z = 5 cm.

0

1

2

3

4
0 0.5 1 1.5 2 2.5 3 3.5 4

66

68

70

72

74

76

78

G2 [V/V]

MOD 13, 380 Hz, feedback loops no. 1 and 2

G1 [V/V]

S
P

L
 [

d
B

]

Figure 5.22. Sound pressure level as a function of gain values of feedback loops no. 1 and
2, for the plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the
microphone: x = 10 cm, y = 15 cm, z = 5 cm.
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included in the control system. The initial value of the sound pressure level,
measured with the control system turned off, is equal 77,74 dB. As it can be
seen, in this case introduction of feedback loops no. 3 and 4 has almost no effect
on the achieved level of noise reduction.

G1 G2 G3 G4 SPL [dB]

0 0 0 0 77.74
2 0 0 0 75.3
0 2 0 0 71.9
0 0 2 0 77.64
0 0 0 2 77.26
2 2 0 0 69.87
2 0 2 0 75.42
2 0 0 2 74.92
0 2 2 0 72.08
0 2 0 2 71.53
0 0 2 2 77.36
2 2 2 0 70.09
2 2 0 2 69.87
2 0 2 2 74.92
0 2 2 2 71.71
2 2 2 2 69.87

Table 5.3. Sound pressure level as a function of gain values of feedback loops no. 1, 2, 3 and 4
for the plate vibrating in the 13

th structural mode, at frequency 380 Hz. Position of the
microphone: x = 10 cm, y = 15 cm, z = 5 cm.

The plots in Figures 5.23-5.25 present the measured sound pressure level
generated by the plate structure vibrating in the 11th structural mode at fre-
quency 320 Hz, at a point of the ambient space with the coordinates x = 10 cm,
y = 20 cm, z = 20 cm, as a function of the gains of feedback loops no. 1, 2 and 4,
respectively. About a 2 dB drop in the sound pressure level is achieved for the
maximum available gain of feedback loop no. 1, a 3 dB drop for loop no. 2, and
less than 1 dB for loop no. 4. However, by combining the operation of loops
no. 1 and 2 in the control system, the maximum achievable noise reduction is
increased to 5,56 dB – the relevant results are presented in Figure 5.26.

Table 5.4 presents the measured sound pressure level generated by the plate
structure vibrating in the 11th structural mode at frequency 320 Hz, at a point
of the ambient space with the coordinates x = 10 cm, y = 20 cm, z = 20 cm, as a
function of various combinations of gain values of feedback loops no. 1, 2 and 4.



136 5. Active vibroacoustic control system

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
63

63.5

64

64.5

65

65.5

66

G1 [V/V]

S
P

L
[d

B
]

Mode no. 11, frequency 320 Hz, feedback loop no. 1

Figure 5.23. Sound pressure level as a function of gain value of feedback loop no. 1 for the
plate vibrating in the 11

th structural mode, at frequency 320 Hz. Position of the microphone:
x = 10 cm, y = 20 cm, z = 20 cm.
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Figure 5.24. Sound pressure level as a function of gain value of feedback loop no. 2 for the
plate vibrating in the 11

th structural mode, at frequency 320 Hz. Position of the microphone:
x = 10 cm, y = 20 cm, z = 20 cm.
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Figure 5.25. Sound pressure level as a function of gain value of feedback loop no. 4 for the
plate vibrating in the 11

th structural mode, at frequency 320 Hz. Position of the microphone:
x = 10 cm, y = 20 cm, z = 20 cm.
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Figure 5.26. Sound pressure level as a function of gain values of feedback loops no. 1 and
2, for the plate vibrating in the 11

th structural mode, at frequency 320 Hz. Position of the
microphone: x = 10 cm, y = 20 cm, z = 20 cm.
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Despite the fact that in this case the maximum gains of all the loops were as-
sumed to be significantly lower than in the previously described cases concerning
analogous situation, presented in Figures 5.23-5.26, the maximum achieved level
of noise reduction is higher, equal to 6,02 dB. Thus, in this case it was possi-
ble to compensate the lower values of applied feedback gains with the higher
number of involved control loops.

G1 G2 G4 SPL [dB]

0 0 0 65.66
3 0 0 63.62
0 3 0 63.62
0 0 3 65.12
3 3 0 60.74
3 0 3 62.68
0 3 3 62.17
3 3 3 59.64

Table 5.4. Sound pressure level as a function of gain values of feedback loops no. 1, 2 and 4
for the plate vibrating in the 11

th structural mode, at frequency 320 Hz. Position of the
microphone: x = 10 cm, y = 20 cm, z = 20 cm.

5.7 Conclusions

Theoretical and experimental investigations on possibilities of an active con-
trol of sound radiated by a vibrating thin plate structure have been described
in the present chapter. The developed control approach, based on the origi-
nal concept and design of the active control system has been introduced and
evaluated.

The theoretical investigations led to derivation of equations describing the
relations between the parameters of the control system and the vibrational char-
acteristics of the considered structure. Based on the considerations presented in
Chapter 3 of the present study, under the assumed acoustic boundary condi-
tions, the modal amplitudes of vibrations can be converted directly into the
parameters describing the acoustic pressure field in a given point of the ambient
space. The derived equations, presented in the previous sections of the present
chapter, reveal a complex character of the involved phenomena. Each of the
piezoelectric sensors responds to vibrations of the structure in some predefined
manner. The induced electric signals are amplified and fed to the relevant actu-
ators which in turn become the secondary sources of vibrations, influencing the
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responses of all involved sensors. The resulting steady state conditions are thus
described with relatively complicated formulas which include all the introduced
relationships.

The signals from the piezoelectric sensors can be also used to determine the
modal parameters of vibrations of the plate. However, due to the fact that only
a limited number of transducers is available in the control system, the informa-
tion obtained in such way is in general incomplete. The developed adaptation
algorithms, presented in Section 5.4 allow to take advantage of any available
additional knowledge about the parameters of the considered structure or the
primary excitation force, in order to improve the adaptivity capabilities of the
control system.

The experimental investigations carried out in an anechoic chamber revealed
that only the resonant vibrations of the considered structure are the source of
significant noise emission. For off-resonant frequencies the measured sound pres-
sure levels and amplitudes of signals induced on the piezoelectric sensors were
too low to efficiently perform the control process. Low signal to noise ratios
caused in such cases instant problems with stability, as the feedback gains had
to be set to relatively high values, in order to induce significant amplitudes of vi-
brations using piezoelectric actuators. The measured amplitudes of the acoustic
pressure in the ambient space were close to the noise floor, and the achiev-
able control performance under such conditions was almost absent. The plate
revealed very sharp resonant characteristics in the considered, low frequency
range and thus, the experiments were focused on resonant vibrations only.

The experimental evaluation of the developed and implemented active vi-
broacoustic control system revealed that under the assumed conditions relatively
high levels of noise reduction, reaching up to about 10 dB, can be achieved. The
use of multiple feedback loops in the system ensured in all cases significantly
better results than single feedback loop operation. The achievable control per-
formance strongly depends on the relation between vibrational characteristics of
the plate and modal parameters of the involved sensor-actuator pairs, as well as
on the choice of a reference point in the ambient space, at which the sound pres-
sure level is measured. This complex relation is consistent with the theoretical
predictions.

Collocated sensor-actuator pairs were used in the feedback loops. Accord-
ingly to the results of theoretical considerations, such a configuration should
ensure a total stability of the control system. However, the experimental in-
vestigations showed that in all cases increasing feedback gains beyond some
critical values caused loss of stability and uncontrolled vibrations of the plate
in the higher frequency modes (with frequencies 1-2 kHz and more). Those crit-
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ical gain values depended on the specific numbers of involved feedback loops
and current parameters of the primary excitation source. The described prob-
lems are most probably caused by the imperfections in the control system which
were not taken into account in theoretical considerations. For instance, slight
discrepancies in a relative positioning of the sensor and actuator belonging to
the same feedback loop, could explain the observed differences in critical gain
values for various control loops. Another factor that could contribute to the loss
of stability are non-ideal parameters of the electronic components and circuit,
the importance of which can increase at higher frequencies.
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Concluding remarks

6.1 Summary

The aim of the present study was to develop, implement, and evaluate an
active vibroacoustic control system for reduction of noise generated by vibrating
thin plate structures with arbitrary boundary conditions. The system, including
both hardware and software, has been successfully designed, implemented, and
tested, proving a high potential in terms of the described tasks. Many various
aspects regarding the considered subject were investigated.

The source of the acoustic radiation are the vibrations of the considered thin
plate structure, excited by an external harmonic force. The issues concerning
determination of the response of the plate to the external excitation were dis-
cussed in Chapter 2. The relevant formulas were derived and the results of the
numerical simulations were presented. It was shown that precise modeling of
the actual mounting conditions of the plate is important in terms of view of the
accuracy of the determined eigenfrequencies and the corresponding mode shape
functions. The orthogonality of the eigenfunctions determined numerically using
various mesh resolutions was also investigated. An important conclusion drawn
from the results of those investigations, was the necessity of using relatively
dense meshes of finite elements in order to avoid errors in further computations,
as many among the derived relations are based on the assumption of fulfilling
the orthogonality criteria by the shape functions.

The issues concerning coupling between the vibrating structure and the
acoustic medium were discussed in Chapter 3. It was shown that in the con-
sidered case, if the plate is surrounded with air, the influence of the inertial
loading introduced by the medium on the vibrational parameters can be ne-
glected. An original algorithm for determination of a free-field acoustic pressure
distribution, based on the Indirect Variational Boundary Element Method, was
proposed. The algorithm was successfully implemented and tested. The obtained
results of simulations were validated by comparison with the results of experi-
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mental investigations carried out in an anechoic chamber. The overall agreement
between the numerical predictions and measurements was fair, and the results
of simulations were most accurate for the far-field region. Taking into account a
high computational efficiency of the proposed approach, it may be regarded as
effective and useful tool for determining the acoustic pressure field distribution
generated by vibrating thin, rectangle-shaped plate structures.

The developed active vibroacoustic control system uses piezoelectric sensors
and actuators to sense and excite vibrations of the controlled structure. The is-
sues regarding various aspects of utilization of piezoelectric transducers in such
applications were discussed in chapter 4. A new form of a theoretical description,
introducing modal sensitivity and selectivity functions was proposed. Using the
introduced approach, modal parameters of sensors and actuators attached to
various beam and plate structures were determined both numerically and ex-
perimentally. It was shown that proper positioning of small, rectangle-shaped
piezoelectric transducers on the surfaces of the considered structures can provide
either a very high or very low sensitivity to selected forms of vibrations.

Special attention was given to the problem of exciting resonant vibrations of
the structure with piezoelectric transducers. Due to the fact that in such cases
the amplitudes of vibrations are limited by occurring nonlinear effects which
were not included in simple models used for theoretical considerations an im-
portant question was raised if the relation between those amplitudes and the
amplitude of the electric signal driving actuator is linear. The carried out ex-
perimental investigations confirmed this hypothesis, with a very good accuracy.

An original technology for gluing piezoelectric transducers to the surfaces
of structures made of electrically conductive material was introduced. The de-
veloped method allows to ensure both very good bonding conditions and sure
electrical connection, while preventing short-circuiting of the electrodes of the
transducer. The technology was implemented in practice and proved highly effi-
cient in numerous experimental investigations. The relevant description can be
found in Section 4.5 of the present study.

Based on the developed form of description of modal parameters of piezo-
electric sensors and actuators, the equations linking the modal amplitudes of
vibrations with the parameters of the control system were derived. Fast and
computationally effective algorithms for solving the introduced formulas were
developed and described in Sections 5.2 and 5.3. The results of investigations
presented in Chapter 3 concerning the phenomenon of structure-borne sound
generation allowed to link the amplitudes of vibrations with the acoustic pres-
sure field distribution in the ambient space. Based on the introduced form of
cost function, a control optimization algorithm was proposed. In order to ensure
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the adaptivity capabilities of the system, an original algorithm for determining
the parameters of the external excitation source was developed and described.
The presented theoretical considerations are of great importance from the point
of view of the experimental part of the present study, as they allow to better
understand the observed phenomena.

The design and construction of the hardware components of the developed
active control system were presented in Section 5.5 of the present study. An
original approach, with a separate fully analogue feedback loop and digital con-
trol unit was proposed. The system, as well as the relevant control software
including the user interface, were implemented in practice and tested in numer-
ous experimental investigations. High levels of noise reduction, reaching up to
about 10 dB were observed for various points of the ambient space, forms of
vibrations and configurations of the control system (i.e., numbers of included
feedback loops).

The obtained results of theoretical investigations, numerical simulations, and
experimental research allow to conclude that the thesis of the present study is
confirmed.

6.2 Scope of contribution

The following investigated issues are the original contribution of the present
study on the background of the current state of the art presented in Section 1.3:

• A novel active vibroacoustic control system (hardware and software) has
been developed and constructed. The system is described in Section 5.5.

• A dedicated control algorithm for determination of the optimal feedback
gain values in a decentralized active control system has been developed.
The detailed description of the algorithm is presented in Sections 5.1-5.3.

• A novel form of description of the active vibroacoustic control system
based on piezotransducers, introducing modal sensitivity and selectivity
functions has been developed. The modal parameters of sensors and ac-
tuators were determined analytically and numerically and compared to
the results of the experimental investigations carried out using various
beam and plate structures made from aluminium or composite materials,
including the actual materials used in aviation. The introduced approach
and the results of investigations are presented in Chapter 4.

• A dedicated adaptation algorithm for determination of the modal param-
eters of the external force exciting vibrations of the controlled structure
has been developed. The algorithm is described in Section 5.4.



144 6. Concluding remarks

• A dedicated algorithm implementing the Indirect Variational Boundary
Element Method, intended for determination of acoustic radiation char-
acteristics of a vibrating, rectangle-shaped, thin plate structure with ar-
bitrary boundary conditions has been developed and implemented. The
algorithm takes advantage of the features of simple geometry of the con-
sidered problem to optimize the computational time and cost. The ob-
tained results of the numerical simulations have been compared to the
results of the experiments carried out in an anechoic chamber. The rele-
vant description can be found in Sections 3.4 and 3.5.

• The control performance and stability of the developed active vibroacous-
tic control system have been evaluated during numerous experimental
investigations carried out in an anechoic chamber. The results of experi-
ments are presented in Section 5.6.

6.3 Recommendations for future work

The presented theoretical investigations concerning active control of vibra-
tions of thin plates with arbitrary boundary conditions can be developed into
cases of different, more complex structures. If only the undertaken assumptions
regarding linearity of the involved phenomena are fulfilled, then such proce-
dure would require only derivation of new, relevant forms of modal sensitivity
and selectivity functions of piezoelectric transducers, as well as relations de-
scribing response to the external excitation source. Those functions could be
directly implemented into equations describing the control system, introduced
in Sections 5.2-5.4 of the present study. If such a new structure would reveal sig-
nificant levels of noise emission for off-resonant excitations, then the potential
and capabilities of the proposed approach could be entirely utilized.

The developed algorithm for determination of acoustic radiation character-
istics of thin plate structures, based on the Indirect Variational Boundary Ele-
ment Method, could also be a subject of further investigations. In this case, the
recommended further research would include the following issues:

• development of the proposed approach into more complex geometries,

• implementation of the developed solver using different, independent and
more computationally-effective environment,

• direct integration with structural dynamics analysis.

An interesting direction of further investigations is utilization of piezoelectric
transducers with more complex shapes in the control system – especially defin-
ing such shapes of transducers that could ensure specific modal characteristics,
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for a given number of forms of vibrations. Based on the introduced theoreti-
cal description of the control process, the geometry of such elements could be
optimized in terms of some specific operating conditions. Different materials,
such as, for instance, thin piezoelectric cables could be used in order to achieve
various, complex forms of transducers.

One of the major problems encountered during experimental investigations
on active vibroacoustic control, was the loss of stability associated with exceed-
ing certain critical feedback gain values. Due to the fact that the amplification
levels are directly connected with achievable control performance, elimination of
the described problem, or at least maximization of the stability range is highly
desired. This aim can be achieved by either improving the parameters of col-
located sensor-actuator pairs, or by modifications of the electronic circuits of
the control system. Additional low-pass filters could be implemented, but one
should notice that every filter introduces an additional, frequency-dependent
phase shift, and that the considered system is very sensitive to phase differ-
ences. Thus, this effect should be compensated, possibly with additional, con-
trollable electronic circuit. The solution to the stability problem could bring
the presented approach closer to practical implementations in various real-life
structures and systems.
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